**场景:**系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。推荐:一次SQL查询优化原理分析**分析:**表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。
3、垂直分库
**概念:**以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。结果:
- 每个库的结构都不一样;
- 每个库的数据也不一样,没有交集;
- 所有库的并集是全量数据;
**场景:**系统绝对并发量上来了,并且可以抽象出单独的业务模块。**分析:**到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。
4、垂直分表

**概念:**以字段为依据,按照字段的活跃性,将表中字段

本文详细探讨了Java数据结构在优化SQL效率中的作用,并深入讲解了垂直分库和垂直分表的概念及场景分析。此外,文章还介绍了常用的分库分表工具如sharding-sphere、TDDL和Mycat,以及分库分表的步骤和面临的问题,如非partition key查询和扩容策略。最后,提到了Java核心架构进阶的学习重点。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



