flink重温笔记(七):Flink 流批一体 API 开发—— Connector 连接器

本文详细介绍了ApacheFlink中JDBC、Kafka和RedisConnectors的使用,包括数据源读取、单词处理、数据写入以及一致性保障的checkpoint机制。作者通过示例展示了如何将socket数据流进行单词计数,并将结果存储到MySQL、Kafka和Redis中。
摘要由CSDN通过智能技术生成

Flink学习笔记

前言:今天是学习 flink 的第七天啦!学习了 flink 中 connector(数据连接器) 部分知识点,这一部分只要是解决数据处理之后,数据到哪里去的问题,主要学习了数据存储到以下三处:
1、关系型数据库 mysql ;
2、消息队列:kafka;
3、非关系型数据库:redis
我觉得还是比较有意思的,这些是以后工作要用到的技能,我一定要好好掌握!

Tips:“莫道春光难揽取,浮云过后艳阳天!”明天周一,又是新的一天,要深入学习 flink 的四大基石属性!

二、Flink 流批一体 API 开发

5. Connectors

5.1 JDBC Connector

该连接器可以向 JDBC 数据库写入数据。

5.1.1 依赖

                
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卡林神不是猫

如果您觉得有帮助可以鼓励小卡哦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值