【XR-3】核心城市(树的直径)

【XR-3】核心城市

题目描述

X 国有 n n n 座城市, n − 1 n - 1 n1 条长度为 1 1 1 的道路,每条道路连接两座城市,且任意两座城市都能通过若干条道路相互到达,显然,城市和道路形成了一棵树。

X 国国王决定将 k k k 座城市钦定为 X 国的核心城市,这 k k k 座城市需满足以下两个条件:

  1. k k k 座城市可以通过道路,在不经过其他城市的情况下两两相互到达。
  2. 定义某个非核心城市与这 k k k 座核心城市的距离为,这座城市与 k k k 座核心城市的距离的最小值。那么所有非核心城市中,与核心城市的距离最大的城市,其与核心城市的距离最小。你需要求出这个最小值。

输入格式

第一行 2 2 2 个正整数 n , k n,k n,k

接下来 n − 1 n - 1 n1 行,每行 2 2 2 个正整数 u , v u,v u,v,表示第 u u u 座城市与第 v v v 座城市之间有一条长度为 1 1 1 的道路。

数据范围:

  • 1 ≤ k < n ≤ 1 0 5 1 \le k < n \le 10 ^ 5 1k<n105
  • 1 ≤ u , v ≤ n , u ≠ v 1 \le u,v \le n, u \ne v 1u,vn,u=v,保证城市与道路形成一棵树。

输出格式

一行一个整数,表示答案。

样例 #1

样例输入 #1

6 3
1 2
2 3
2 4
1 5
5 6

样例输出 #1

1

提示

【样例说明】

钦定 1 , 2 , 5 1,2,5 1,2,5 3 3 3 座城市为核心城市,这样 3 , 4 , 6 3,4,6 3,4,6 另外 3 3 3 座非核心城市与核心城市的距离均为 1 1 1,因此答案为 1 1 1

思路

  • 首先,题目求的是:与核心城市的距离最大的城市,其与核心城市的距离最小,我们直接的思路就是找到直径,然后找到中点,然后再从中点向下枚举,这样就能使它的值最小了。
    在这里插入图片描述
  • 这种只要找深度即可。(因为每个城市间的距离跟深度有关系(前提是找到中点))
  • 拓展:求树的直径有两种方法:2遍dfs、树形dp。

代码

//首先先求出树的直径,然后找到中点,然后向下搜索即可

//一般用两边dfs,第一遍第一次DFS我们从任意一个节点开始走记录下离它最远的节点,第二遍是记录路径

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 1e5+10,M = 2*N;

int e[M],ne[M],w[M],h[N],idx;
bool st[N];
int pre[N];//记录路径
int dist[N],depth[N];
int maxdepth[N];
int n,m,maxv;//深度最大值
int ans[N];
int num;//记录最远的编号

void add(int a,int b){
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void dfs1(int u,int fa){
    if(depth[u]>maxv){
        maxv=depth[u];
        num=u;
    }
    for(int i=h[u];~i;i=ne[i]){
        int j=e[i];
        //求树的直径都是这样写的,不能回头
        if(j==fa)continue;
        depth[j]=depth[u]+1;
        
        dfs1(j,u);
    }
}

void dfs2(int u,int fa){
    if(depth[u]>maxv){
        maxv=depth[u];
        num=u;
    }
    for(int i=h[u];~i;i=ne[i]){
        int j=e[i];
        //求树的直径都是这样写的,不能回头
        if(j==fa)continue;
        depth[j]=depth[u]+1;
        pre[j]=u;//记录路径
        dfs2(j,u);
    }
}

void dfs3(int u,int fa){
    maxdepth[u]=depth[u];
    
    for(int i=h[u];~i;i=ne[i]){
        int j=e[i];
        
        if(j==fa)continue;
        
        depth[j]=depth[u]+1;
        
        dfs3(j,u);
        
        maxdepth[u]=max(maxdepth[u],maxdepth[j]);
    }
}

int main(){
    cin>>n>>m;
    
    memset(h,-1,sizeof h);
    
    for(int i=1;i<n;i++){
        int a,b;
        cin>>a>>b;
        add(a,b);
        add(b,a);
    }
    
    dfs1(1,-1);
    maxv=0;
    memset(depth,0,sizeof depth);
    dfs2(num,-1);
    
    
    int k=num;
    
    //找中点
    //路径往回跳
    for(int i=1;i<=(depth[num]+1)/2;i++)k=pre[k];
    memset(depth,0,sizeof depth);
    //找最大深度,同时以当前点为根节点进行depth
    dfs3(k,-1);
    
    for(int i=1;i<=n;i++)ans[i]=maxdepth[i]-depth[i];
    
    sort(ans+1,ans+1+n,greater<int>());
    
    int res=0;
    for(int i=m+1;i<=n;i++){
        res=max(res,ans[i]+1);
    }
    
    cout<<res;
    
    return 0;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值