时间序列成像之马尔可夫变迁场 是一种用于时间序列分析的技术,它基于(Markov Process)并将其转化为图像形式。MTF的核心思想是将时间序列数据离散化为有限数量的状态,并分析这些状态之间的转移关系。然后,通过构建一个转移概率矩阵,将这些状态的转移概率表示为一个图像。这种方法在许多应用中具有很好的表现,特别是在和任务中。马尔可夫过程是一个满足的随机过程。其核心特性是,与过去的状态无关。对于离散状态的马尔可夫过程,如果状态空间是有限的,那么系统的转移行为可以通过来描述。
torch_CNN 利用pytorch环境使用CWRU数据集搭建CNN网络实现10分类的轴承故障诊断。但现有轴承故障诊断研究不仅仅局限于轴承正常运转、内圈、外圈、滚动体故障四种情况。现有研究主要面对多工况,包括故障类型、转速、负载等情况,本文基于torch环境搭建CNN网络用于实现10分类任务。
基于改进的粒子群算法进行vmd分解 针对粒子群算法惯性权重和学习因子两个参数进行改进,得到改进的粒子群算法。并以最小近似熵为适应度函数对VMD分解惩罚因子和分解数量两个参数进行优化取值。结果证明优化的粒子群算法具有更好的效果
matlab读取各种文件 常用的几种matlab读取纯数字csv文件、excel文件,带表头的csv、excel文件,带表头的txt文件、不带表头的txt文件以及声音信号的读取。matlab中变量的保存。
Anaconda配置tensorflow-gpu2.6.0环境,提供几个常用包匹配版本 在anaconda命令行中进行tensorflow-gpu2.6.0深度学习环境配置。包含包的安装,各个常用包版本匹配,兼容性等。