最优化理论期末复习

一、最优化基础

1、判断矩阵A是不是正定

      若A的特征值全为正,则A正定。即\left | A-\lambda E \right |=0,其中 \lambda 为特征值。

注:

  1. 正定矩阵:对于一个n阶矩阵A,如果它的所有特征值都大于0,则矩阵A是正定的。

  2. 负定矩阵:对于一个n阶矩阵A,如果它的所有特征值都小于0,则矩阵A是负定的。

  3. 半正定矩阵:对于一个n阶矩阵A,如果它的所有特征值都大于等于0,则矩阵A是半正定的。

  4. 半负定矩阵:对于一个n阶矩阵A,如果它的所有特征值都小于等于0,则矩阵A是半负定的。

2、梯度(一阶导数)

3、Hesse矩阵

4、极值、稳定点

二、无约束规划方法

1、最速下降法
        迭代公式:        ​​​​​x^{k+1} = x^{k}+a_{k}d^{k}

                其中: d^{k} = -\triangledown f(x^{k}) 为搜索方向;

                            a^{k} 为步长。令 f(x^{k+1})=f(x^{k}+a_{k}d^{k}),代入x^{k}d^{k}数据,

                            由 {f}'(x^{k+1}) = 0 解出 a^{k}

        算法步骤 : 

                            (1)求 d^{0}

                              (2)   判断 ||d^{0}|| < \varepsilon ,若成立,则退出;否则,继续。

                              (3)求 a^{0} ,对f(x^{0}+a_{0}d^{0})  求导,令其为0,可得 a^{0} 。

                            (4)x_{1} = x^{0}+a_{0}d^{0},重复1步骤,其中k+=1。

        

        例题1

依次求解:k = 1 时,a_{1} = 1,x^{2}=(-1,1.4)^{T}

                  k = 2 时,a_{2} = 0.2,x^{2}=(-0.96,1.44)^{T}

                 显然,a_{2}满足约束,停止计算。

例题2

2、牛顿法
        迭代公式:        x^{k+1}=x^{k}-\left [ \triangledown ^{2}f(x^{k}) \right ]^{-1}\triangledown f(x^{k})

               其中:                -\left [ \triangledown ^{2}f(x^{k}) \right ]^{-1}\triangledown f(x^{k}) = d_{k}

               那么就有:        \triangledown ^{2}f(x^{k})\cdot d_{k} = -\triangledown f(x^{k})

               可由上式求出方向,牛顿法中步长恒为1。

        

        算法步骤:       

                        (1)求 x_{0}处梯度:        \triangledown f(x^{0})

                        (2)判断 ||\triangledown f(x^{0})|| < \varepsilon ,若成立,则退出;否则,继续。

                        (3)求x_{0}处黑塞矩阵:  \triangledown ^{2}f(x^{0})

                        (4)求 d^{0} ,即解出:    \triangledown ^{2}f(x^{0})\cdot d_{0} = -\triangledown f(x^{0})

                        (5)x^{1}=x_{0}+d^{0},重复1步骤,其中k+=1。

        例题1

3、共轭梯度法

        

       正定二次函数的算法步骤:

                第一步:

                        (1)求 x_{0}处梯度:        \triangledown f(x^{0})

                        (2)判断 ||\triangledown f(x^{0})|| < \varepsilon ,若成立,则退出;

                                 否则,方向:d^{0}=-\triangledown f(x^{0})

                        (3)求x_{0}处黑塞矩阵:  \triangledown ^{2}f(x^{0}),记其为A。

                        (4)求步长:a_{0}=-\frac{\left [ \triangledown f(x^{0}) \right ]^{T}\cdot d^{0}}{\left [ d^{0} \right ]^{T}Ad^{0}}
                        (5)x^{1}=x_{0}+a_{0}d^{0}

                第二步:

                        (1)求 x_{0}处梯度:        \triangledown f(x^{1})

                        (2)判断 ||\triangledown f(x^{1})|| < \varepsilon ,若成立,则退出;

                                 否则,方向:d^{1}=-\triangledown f(x^{1})+\beta d^{0}

                                 其中:\beta =\frac{||\triangledown f(x^{1})||^{2}}{||\triangledown f(x^{0})||^{2}}

                        (3)求x_{0}处黑塞矩阵:  \triangledown ^{2}f(x^{1}),记其为A。

                        (4)求步长:a_{1}=-\frac{\left [ \triangledown f(x^{1}) \right ]^{T}\cdot d^{1}}{\left [ d^{1} \right ]^{T}Ad^{1}}

                        (5)x^{2}=x_{1}+a_{1}d^{1},重复1步骤,其中k+=1。

        例题1

图片上两个a等式后面都有负号,手误

三、约束规划的最优性条件

        1、含等式和不等式约束的库恩-塔克条件(K-T点)

              现有:              

                                min   f(x)

                                s.t.    g_{i}(x) \geq 0,i=1,2,\cdots ,m

                                         h_{j}(x) = 0,j=1,2,\cdots ,l

               因为 h_{j}(x) = 0 等价于  h_{j}(x) \geq = 0 、h_{j}(x)\leq 0

               则库恩-塔克条件为:

                                \triangledown f(x^{\ast })-\sum_{i=1}^{m}r_{i}\triangledown g_{i}(x^{\ast }) - \sum_{j=1}^{l}\lambda _{j}\triangledown h_{j}(x^{\ast }) = 0

                                r_{i}\triangledown g_{i}(x^{\ast }) =0,        i=1,2,\cdots ,l

                                r_{i}\geq 0,                       i=1,2,\cdots ,l

               满足上述条件的点称为K-T点

        例题1

        例题2

四、线性规划

1、标准形式的转化

2、单纯形法
        例题1

        其中第四、五列构成了一个单位矩阵,被选为了基,所以表中 f 的下方为 x4,x5

        检验数 \overline{C}=(-2,-3,5),因为 x1,x2\geq 0,且系数都为负数,表明 f 还有下降的空间,其中 x2 下降最快,所以 x2 进基。

        根据min\left \{ \frac{10}{4},\frac{4}{2} \right \},得 x5 出基。

        将x2列的x5那个数字化为1,其余列的全化为0,即打上星号的数字。

        检验数 \overline{C}=(-\frac{1}{2},\frac{25}{2},\frac{2}{3}),x1进基,min\left \{ \frac{2}{1},\frac{2}{0.5} \right \},x4出基。

        将x1列的x4那个数字化为1,其余列的全化为0,即打上星号的数字。

3、对偶单纯形法
        例题1

        

最优解为:(0,\frac{1}{4},\frac{1}{2})

五、罚函数法

1、外罚函数法

                                min   f(x)

                                s.t.    g_{i}(x) \leq 0,i=1,2,\cdots ,m

                                         h_{j}(x) = 0,j=1,2,\cdots ,l

        构造外罚函数:P(x,\sigma )= f(x) + \sigma \widetilde{P}(x)

                      其中:\sigma为罚因子,决定惩罚力

                                \alpha ,\beta 一般取 2 。

算法步骤

例题1(等式约束)

例题2(不等式约束)

                        M就是\sigma

2、内罚函数法

        算法步骤 

        例题1 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值