深度学习项目八:YOLO v5调用coco API 评估数据集结果

本篇博客介绍了如何使用YOLO v5调用COCO API来评估数据集。首先,将YOLO格式的.txt注释文件转换为COCO格式的json文件,然后配置并运行val.py以应用模型预测,并生成best_predictions.json。接着,通过val_sim.py文件进一步处理预测结果。最后,解析并展示运行结果。
摘要由CSDN通过智能技术生成

深度学习项目八:YOLO v5调用coco API 评估数据集结果

一、将yolo的.txt转换成coco的json文件

参考代码如下:(注意每个文件的路径)

import os
import json
import random
import time
from PIL import Image
import csv

coco_format_save_path = 'C:/Users/Lenovo/Desktop/annotations'  # 要生成的标准coco格式标签所在文件夹
yolo_format_classes_path = 'annotations.csv'  # 类别文件,
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小啊磊_Vv

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值