深度学习项目七:使用yolov5s.pt权重,结合opencv,实现实时检测

本文介绍了如何结合YOLOv5s.pt模型和OpenCV库,实现实时摄像头视频中的人体检测。通过加载预训练的权重,解析模型信息,特别是针对person类别,然后重构代码以优化显示检测结果。
摘要由CSDN通过智能技术生成

深度学习项目七:使用yolov5s.pt权重,结合opencv,实现实时检测


一、加载目标检测模型

  • 加载模型函数
  • 注意
torch.hub.load('./yolov5', 'custom',path='./yolov5/pretrained/yolov5s.pt', source=
<think>嗯,用户遇到了Python中的断言错误,具体是文件未找到的错误,发生在YOLOv5的utils/general.py里。首先,我需要回忆一下YOLOv5的结构和常见的文件路径问题。这个错误通常是因为程序在尝试打开某个文件时,路径不正确导致的。用户可能是在运行检测或训练脚本时遇到了这个问题。 首先,应该检查文件路径是否正确。YOLOv5通常会从命令行参数中获取文件路径,比如数据集配置文件或者模型权重文件。用户可能在传递参数时路径有误,比如使用了相对路径而当前工作目录不是项目根目录,或者绝对路径中有拼写错误。 接下来,考虑数据集配置文件的路径是否正确。比如在训练时,用户可能会指定一个yaml文件,这个文件里包含了训练和验证数据的路径。如果这些路径设置不正确,也会导致文件未找到的错误。这时候需要检查data目录下的yaml文件,确认其中的路径是否存在,并且是否正确指向了图片和标签文件。 另外,模型权重文件也是一个常见的错误点。如果用户使用了预训练的权重,比如yolov5s.pt,但该文件没有被正确下载或存放位置不对,也会触发断言错误。这时候需要确认权重文件是否在指定的目录下,或者重新下载。 还有可能是在使用--img参数时,图片尺寸不符合要求,但根据错误信息,更可能还是文件路径的问题。用户需要检查所有涉及文件读取的地方,比如加载数据集的代码,或者加载模型的代码,是否有正确的路径处理。 另外,用户提到的断言错误发生在general.py中,可能是在某个assert语句中检查文件是否存在失败。比如,在读取文件时,使用了assert os.path.exists(file), f"File not found: {file}"这样的代码。这时候,错误信息应该会显示具体的文件路径,用户可以根据这个路径去排查问题。 可能用户的环境配置有问题,比如没有正确设置工作目录,导致相对路径解析错误。这时候建议用户打印出当前的工作目录,并确认相对路径是否基于项目根目录。或者建议用户使用绝对路径来避免这个问题。 还有可能是文件权限问题,虽然可能性较低,但也不排除。用户需要确认程序有权限访问相关文件和目录。 总结一下,解决步骤应该是:1. 检查错误信息中的具体文件路径;2. 确认该路径是否正确存在;3. 检查所有相关的配置文件中的路径设置;4. 确保工作目录正确;5. 使用绝对路径进行测试;6. 确认文件权限。此外,还可以考虑更新YOLOv5到最新版本,可能这个问题在后续版本中已经被修复或者有更好的错误提示。 最后,生成的相关问题需要围绕文件路径错误、YOLOv5常见问题、断言错误处理等方面,帮助用户进一步排查可能的相关问题。</think>### Python文件未找到断言错误解决方法(YOLOv5 utils/general.py) #### 错误原因分析 在YOLOv5的`utils/general.py`中,断言错误`File not found`通常由以下原因导致: 1. **路径格式问题**:Windows路径未使用原始字符串或双反斜杠转义,例如`path = r"C:\dataset"`或`path = "C:\\dataset"`[^1] 2. **配置文件缺失**:数据集配置文件`*.yaml`未正确指向图片/标签目录 3. **权重文件缺失**:预训练权重文件(如`yolov5s.pt`)未下载或路径错误 4. **工作目录错误**:未从项目根目录启动脚本 #### 分步解决方案 1. **检查基础路径配置** ```python # 在调用训练命令前添加路径验证 import os cfg_path = "data/coco128.yaml" print(f"绝对路径:{os.path.abspath(cfg_path)}") # 输出实际解析路径 assert os.path.exists(cfg_path), "配置文件路径错误!" ``` 2. **验证数据集配置结构** 正确的yaml文件格式应包含: ```yaml train: ../datasets/coco128/images/train2017 val: ../datasets/coco128/images/train2017 nc: 80 names: [...] # 类别名称列表 ``` 3. **使用路径修复函数(适用于跨平台)** ```python def check_file(path): path = str(Path(path).absolute()) if not os.path.isfile(path): raise FileNotFoundError(f"文件缺失:{path}。请执行:" f"curl -L https://url.cn/xxx -o {path}") return path ``` #### 常用修复命令 ```bash # 下载预训练权重 wget https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt -P weights/ # 检查数据集符号链接 cd yolov5 ln -s /path/to/real/dataset data/custom_dataset ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小啊磊_Vv

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值