深度学习项目三:Unet网络搭建
前言
- 针对前一个项目,搭建一个普通的浅层神经网络, 主要了解卷积、池化、展平以及全连接,本次项目实战,对原有的Unet网络进行简单修改,进行搭建, 本节主要内容是上采用, 代码的复用操作等。
一、Unet 网络
1.Unet简要介绍
U-Net架构包括一个捕获上下文信息的收缩路径和一个支持精确本地化的对称扩展路径。U-Net证明了这样一个网络使用非常小的图像可以进行端到端的训练,并在生物分割挑战赛中取得了比以前最好的方法。如下图是论文中的网络结构。

- U-Net 是一个 encoder-decoder 结构,左边一半的 encoder 包括若干卷积,池化,把图像进行下采样,右边的 decoder 进行上采样,恢复到原图的形状,给出每个像素的预测。
编码器
本文介绍了对Unet网络的修改,包括去除原版中encoder-decoder连接部分的裁剪操作,改为直接通道拼接。详细阐述了修改后的网络结构,并提供了最小卷积组件的代码实现,最后展示了整体网络的前向传播过程中的通道连接和上采样操作。
订阅专栏 解锁全文
1045

被折叠的 条评论
为什么被折叠?



