矩阵快速幂

思路:

1.重载矩阵运算符,定义矩阵乘法或者重载矩阵

2.按照快速幂的思想,循环计算或者递归计算

注意点:表示结果的矩阵要定义为单位矩阵

不使用重载:

#include<iostream>
#include<algorithm>
#include <map>
#include <unordered_map>
#include <queue>
#include<cstdio>
#include<string>
using namespace std;
#define LL long long
#define N 105
#define Md 1000000007
LL n, m, i, j, k;
LL res[N][N];
LL tmp[N][N];
LL s[N][N];
void clear(LL a[][N])
{
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			a[i][j] = 0;
		}
	}
}
void ResMul(LL a[][N], LL b[][N])
{
	clear(tmp);
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			for (k = 0; k < n; k++)
			{
				//printf("a[i][k]=%lld b[k][i]=%lld\n", a[i][k], b[k][i]);
				tmp[i][j] += a[i][k] * b[k][j] % Md;
				tmp[i][j] %= Md;
			}
		}
	}
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			res[i][j] = tmp[i][j];
		}
	}
}
void AMul(LL a[][N], LL b[][N])
{
	clear(tmp);
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			for (k = 0; k < n; k++)
			{
				tmp[i][j] += a[i][k] * b[k][j] % Md;
				tmp[i][j] %= Md;
			}
		}
	}
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			s[i][j] = tmp[i][j];
		}
	}
}


int main()
{
	
	cin >> n >> m;
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			cin >> s[i][j];
		}
	}
	for (i = 0; i < n; i++)
	{
		res[i][i] = 1;//单位矩阵
	}
	while (m)//快速幂
	{
		if (m & 1)
		{
			ResMul(res,s);
		}
		AMul(s, s);
		m >>= 1;
	}
	for (i = 0; i < n; i++)//输出结果
	{
		for (j = 0; j < n; j++)
		{
			cout << res[i][j] << ' ';
		}
		cout << endl;
	}

	return 0;
}

重载:

学习中,学习链接:C++-重载运算符-矩阵(示例代码)_136.la

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值