矩阵快速幂及斐波那契数列

1.通用模板:矩阵快速幂

前几天写过一篇矩阵快速幂的一种解法,但是当时只是初学,所以用了当时我更好理解的方法去做。那个解法需要调用两个很相像的函数,而且容易造成紊乱,也不利于矩阵快速幂的推广,所以在观摩了其他大佬的代码后对之前的代码进行了改进。

先把题目贴出来:

题目背景

矩阵快速幂

题目描述

给定 n×n 的矩阵 A,求 A^k

输入格式

第一行两个整数 n,k 接下来 n 行,每行 n 个整数,第 i 行的第 j 的数表示A_i,_j

输出格式

输出 A^kAk

共 nn 行,每行 nn 个数,第 ii 行第 jj 个数表示 (A^k)_{i,j}(Ak)i,j​,每个元素对 10^9+7109+7 取模。

输入输出样例

输入 #1复制

2 1
1 1
1 1

输出 #1复制

1 1
1 1

说明/提示

【数据范围】

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long LL;
//或者#define LL long long
#define N 105
const int md = 1e9 + 7;
LL i, j, k;
LL m, n, t;//必须定义为长整型,否则全错
//1.使用结构体定义矩阵和矩阵清零的函数,方便后续使用
struct Matrix//我之前的写法没有定义矩阵,也没重载乘法运算符,不能让两个二维数组直接赋值,但是可以让两结构体直接赋值
{
	LL s[N][N];
	void clear() {
		for (i = 0; i < n; i++) {
			for (j = 0; j < n; j++) {
				s[i][j] = 0;//矩阵初始化
			}
		}
		
		return;
	}
}base;//最开始的矩阵在这里就可以定义了,不在前面定义的话,后面的函数可能会找不到base,然后出错
//2.重载矩阵乘法,方便后续计算,同样使用*只是不能使用*=
Matrix operator * (Matrix a, Matrix b)
{
	Matrix tmp;
	tmp.clear();
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			for (k = 0; k < n; k++) {
				tmp.s[i][j] += a.s[i][k] * b.s[k][j] % md;
				tmp.s[i][j] %= md;
			}
		}
	}
	return tmp;
}
//3.然后就是快速幂的解法了
Matrix MFPow()
{	
	
	Matrix res;
	res.clear();
	for (i = 0; i < n; i++)
	{
		res.s[i][i] = 1;
	}//初始化为单位矩阵
	while (m)
	{
		if (m & 1)
		{
			res = res * base;
		}
		base = base * base;
		m >>= 1;
	}
	return res;
}

int main()
{
	Matrix eRes;
	cin >> n >> m;
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			cin >> base.s[i][j];
		}
	}
	eRes = MFPow();
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			cout << eRes.s[i][j]<<' ';
		}
		cout << endl;
	}
	return 0;

}

2.普通斐波那契数列的解法 

题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

F_n = \left\{\begin{aligned} 1 \space (n \le 2) \\ F_{n-1}+F_{n-2} \space (n\ge 3) \end{aligned}\right.

题目描述

请你求出 F_n \bmod 10^9 + 7 的值。

输入格式

一行一个正整数 n

输出格式

输出一行一个整数表示答案。

输入输出样例

输入 #1复制

5

输出 #1复制

5

输入 #2复制

10

输出 #2复制

55

说明/提示

【数据范围】
对于 60% 的数据,1≤n≤92;
对于 100% 的数据,1\le n < 2^{63}

题解:构造一个斐波那契数列的1*2矩阵: \left [ F_n ,F_n-1\right ],;

                                        ​​​​​​​        ​​​​​​​  F_n=1*F_n_-1+1*F_n_-2​​​​​​​

         ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        F_n_-1=1*F_n_-1+0*F_n_-2

 根据矩阵的知识,我们可以构建这样的 \begin{bmatrix}1 & 1\\1 & 0 \end{bmatrix} 一个2*2的base矩阵

然后我们从比较简单的项分析一下:\begin{bmatrix}F_3 & F_2 \end{bmatrix}

F_3=1*base[0][0]+1*base[0][1]; F_2=1*base[1][0]+1*base[1][1];

所以初始矩阵res可以定义为\begin{bmatrix}1 &1 \end{bmatrix},(其实也可以定义为单位矩阵吗、,但是这么解释之后的推广就能更好地理解了)

最后的代码:

#include<iostream>
#include<algorithm>
#include <map>
#include <unordered_map>
#include <queue>
#include<iostream>
#include<algorithm>
#include <map>
#include <unordered_map>
#include <queue>
#include<cstdio>
#include<string>
using namespace std;
#define LL long long
#define Md 1000000007
#define N 100
LL i, j, k;
LL n, m;
struct Matrix
{
	LL s[N][N];
	void clear()
	{
		for (i = 0; i < 2; i++)
		{
			for (j = 0; j < 2; j++)
			{
				s[i][j] = 0;
			}
		}
		return ;
	}
}base;//在前面定义,否则后面找不到
Matrix operator * (Matrix a, Matrix b)
{
	Matrix tmp;
	tmp.clear();
	for (i = 0; i < 2; i++)
	{
		for (j = 0; j < 2; j++)
		{
			for (k = 0; k < 2; k++)
			{
				tmp.s[i][j] += a.s[i][k] * b.s[k][j] % Md;
				tmp.s[i][j] %= Md;
			}
		}
	}
	return tmp;
}
Matrix FPow(LL m)
{
	Matrix res;
	res.clear();
	/*for (i = 0; i < 2; i++)
	{
		res.s[i][i] = 1;
	}*/
    res.s[0][0]=1;
    res.s[0][1]=1;
	while (m)
	{
		if (m & 1)
		{
			res = res * base;
		}
		base = base * base;
		m >>= 1;
	}
	return res;
}

int main()
{
	Matrix ERes;
	cin >> n;
	if (n <= 2) cout << 1;
	base.s[0][0] = base.s[0][1] = base.s[1][0] = 1;
	m = n - 2;//如果初始矩阵res定义为单位矩阵,m=n-1;
	if (n > 2)
	{
		ERes=FPow(m);
		cout << ERes.s[0][0];
	}
	

	return 0;
}

给自己挖个坑,斐波那契数列的一些推广的题目等之后再写

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值