位运算主要有两种题型,第一种是求一个数字化为二进制之后第k位的值,他的模板如下:
int lowbit(int x){
return x>>k&1;
}
原理如下:
以10为例,求10的二进制第2位的值,将10化成二进制是1010,右移2位之后变成10,然后与1进行与运算就得到了0,也就是10的二进制第2位的值。(以下标从0开始)
第二种题型是输出一个数字二进制中1的个数,这里用到一个lowbit函数,它的模板如下:
int lowbit(int x){
return x&-x;
}
它的作用是输出一个数字二进制的第一个1以及它之前的数,以10为例,10的二进制表示为1010,-10的二进制表示位0110,1010&0110=10。
下面看一道例题
题目
给定一个长度为 n 的数列,请你求出数列中每个数的二进制表示中 1 的个数。
输入格式
第一行包含整数 n。
第二行包含 n 个整数,表示整个数列。
输出格式
共一行,包含 n 个整数,其中的第 i 个数表示数列中的第 i个数的二进制表示中 1 的个数。
数据范围
1≤n≤100000,
0≤数列中元素的值≤10^9
输入样例:
5
1 2 3 4 5
输出样例:
1 1 2 1 2
代码
#include<iostream>
using namespace std;
int n,x;
int lowbit(int n){
return n&-n;
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++) {
int res=0;
scanf("%d",&x);
while(x) x-=lowbit(x), res++;//让数字x每次减去它最后一个1及其之后的元素直到它等于0
//res记录一共减了多少次1,就是1的个数
printf("%d ",res);
}
}