数据仓库
文章平均质量分 86
汪巡
这个作者很懒,什么都没留下…
展开
-
几种主流的数据仓库建模方法
数据仓库建模在数据仓库建设中有很重要的地位,是继业务梳理后的第二大要点,是将概念模型转化为物理模型的一个过程。关于建模一向被吹得神乎其神,相关介绍文章以及招聘需求中对此都要求很高,那么了解主流的建模方法和各自的优劣势以及应用场景就变得至关重要了。选择合适的建模方法要考虑几点要素,分别是:性能、成本、效率和质量,性能是能够快速的查询所需的数据,减少数据IO的吞吐;成本是减少不必要的冗余,实现计算结果的复用,减少大数据系统的计算成本和存储成本;效率则是改善使用数据的效率,计算、查询效率也算在内;质量是改善数据原创 2021-09-26 17:12:11 · 4137 阅读 · 0 评论 -
数据仓库概述
最近开始接触数据仓库,要了解一项技术或者一个工具,就得先去了解它在某个链路中所处的位置,以及它的出现是为了解决什么问题,那么就有了这篇文章,从数据仓库的诞生环境、所能解决的问题以及主流的上层架构,简单介绍了数据仓库这项技术。产生背景数据仓库的诞生离不开环境的因素,在数据量加剧的当今社会和数据分析挖掘需求日益增加的环境下,传统面向业务的 MySQL、Oracle 等 OLTP 型数据库已经不能满足当下一些特殊的需求。OLTP 型数据库主要是解决业务需求,构造也具有遵循 3NF 范式,避免冗余等特点,但这些原创 2021-09-26 17:01:42 · 156 阅读 · 0 评论 -
数据仓库架构
这节来说说数据仓库的架构,关于架构并没有一个统一的标准,按照数据量以及使用环境可以搭建适合当下场景的数据仓库,下面主要是介绍比较大众或者说比较通用的数据仓库架构。传统的数据仓库架构按层级可分为 ETL、ODS、DWD、DWS 和 ADS 五个层级,层次结构如下图所示。这五个层级针对不同的需求解决各阶段各自的问题,在数据量少的情况下个别层次可以继续简化,也可以在层次之间增加数据中间件,让整个过程更加规范化,对于层级结构没必要细究,重点是每个层级所解决的问题以及在整个链路所处的位置。ETLETL(Ext原创 2021-09-26 16:58:46 · 2199 阅读 · 0 评论 -
数据仓库概述
最近开始接触数据仓库,要了解一项技术或者一个工具,就得先去了解它在某个链路中所处的位置,以及它的出现是为了解决什么问题,那么就有了这篇文章,从数据仓库的诞生环境、所能解决的问题以及主流的上层架构,简单介绍了数据仓库这项技术。产生背景数据仓库的诞生离不开环境的因素,在数据量加剧的当今社会和数据分析挖掘需求日益增加的环境下,传统面向业务的MySQL、Oracle等OLTP型数据库已经不能满足当下一些特殊的需求。OLTP型数据库主要是解决业务需求,构造也具有遵循3NF范式,避免冗余等特点,但这些特点在面向分析原创 2021-09-26 16:52:06 · 456 阅读 · 0 评论
分享