阅读论文:Bottleneck Attention Module

该博客介绍了如何设计一种新型的深度学习模块,该模块能够与任何前馈卷积神经网络集成。模块通过两条路径分别处理通道和空间注意力,一条类似SEnet的通道注意力路径,另一条是使用扩张卷积的空间注意力路径。通过实验,发现在膨胀值为4时性能达到饱和,而16的缩减率提供了最佳精度,同时参数量远少于SE模块。这种设计在保持高性能的同时减少了计算成本,特别适合用于瓶颈层。
摘要由CSDN通过智能技术生成

从论文中可以了解到本模块可以与任何前馈卷积神经网络集成,它沿着通道和空间两条不同的路径推断出attention map。模块结构图如下:

1.结构       

首先对于输入的feature map(F)进行两次操作。一条路径是类似于SEnet的结构,先对F全局池化,得到一个Fc \in R^{C*H*W}的通道向量。然后在使用一个多层感知机(MLP),目的是为了从通道向量Fc估计跨通道的注意力,为了节省参数开销,将隐藏激活大小设置为RC/r×1×1,其中r是缩减率。最后加入批处理规范化层(BN)以调整空间分支输出的比例。通道注意力计算如下:

Fs

另一条路径是空间注意力Fs,采用扩张卷积()来高效地扩大感受野。为了节省开销,采用resnet的瓶颈结构,将特征F∈使用1×1卷积将R^{C*H*W}投影到降维R^{C/r*H*W}以整合和压缩跨通道维度的特征映射。然后使用两个3×3的扩展卷积层来有效地利用上下文信息,最后,使用1×1卷积将特征再次缩减为R^{1*H*W} 。最后加入批处理规范化层(BN),计算如下:

       两条路径然后合并,在合并它们之前将注意图扩展到RC×H×W,在各种组合方法中,如按元素求和、乘法或最大运算,选择按元素求和来实现高效梯度流。再使用sigmoid函数来获得最终的3D attention map。计算如下:

        最后就是计算最后模块的输出

 

 2.实验结果分析

两个分支均有效且合并更好。实验得出膨胀值为4时,性能已经饱和,16的还原率达到了最佳精度。性能优于SE,但参数比SE少得多,因为只将模块放置在瓶颈处,而不是每个conv块。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值