IPython的使用技巧整理

关于IPython的使用技巧有很多,这里只是梳理了几个常用的以及我目前遇到过的,其他的技巧还没使用过,所以就没有列出来。

01|Tab键自动完成:在shell中输入表达式时,只要按下Tab键,当前命名空间中任何与已输入的字符串相匹配的变量(对象、函数等)就会被找出来。该功能主要是用来,当我们不确定已输入的字符有什么可以操作的变量时使用。

02|内省:在变量的前面或后面加上问号(?)就可以将有关该对象的一些通用信息显示出来。该功能可以帮助我们对数据有个大概的了解与认识,尤其是对于那些几千万行的大数据时,没法全部打印出来的情况下,可以通过这种方法进行对数据的了解。与此功能类似的还有一个info()函数,可以用来查看有几行几列,以及每一列是否有缺失值等数据。

03|中断正在执行的代码:代码正在执行时,只要按下“Ct-rCl”,就会引发一个KeyboardInterrupt
。除一些特殊的情况以外,绝大部分Python程序会立即停止执行。

04|魔术命令:IPython有一些特殊命令(被称为魔术命令),他们的存在可以为常见任务提供便利,还可以控制IPython 系统的行为。魔术命令是以百分号%为前缀的命令。%magic-用来显示所有魔术命令的详细文档。%time和%timeit-用来测试代码执行时间。

对于规模较大,运行时间较长的数据分析应用程序,你可能会希望测试一下各个部分函数调用或语句执行时间,来判断到底是哪个复杂的计算过程需要的时间较多。

你就可以用%time和%timeit来实现。两者的区别如下:对相同语句多次执行%time以后,每次的结果都是变化的而%timeit,对于任意语句,他都会选择执行多次,然后产生一个较为精确的平均值。

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

破碎的天堂鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值