手把手教你如何利用Python薅羊毛(快手极速版)_撸金币脚本 python

本文介绍如何使用Python自动化脚本在快手极速版上刷金币,详细讲解了Python环境配置、夜神模拟器安装、adb工具使用及脚本编写过程,旨在解放双手并实现薅羊毛目标。
摘要由CSDN通过智能技术生成

不说多话,我们直接进入正文:

一、项目简介

快手极速版看视频,可以有金币奖励,但是需要人手不停的一个视频一个视频的滑动,利用Python的强大功能,通过代码实现自动刷视频,有效解放双手的同时可以薅点羊毛搞个早饭钱。

软件准备:

1、Python环境安装 https://www.python.org/downloads/

2、夜神模拟器 https://www.yeshen.com/

3、adb 工具 (git代码包里面已下载,拿来直接用)

当前为windows下操作~

二、开始动手动脑

2.1 安装Python
如果仅用Python来处理数据、爬虫、数据分析或者自动化脚本、机器学习等,我建议使用Python基础环境+jupyter即可,安装使用参考Windows/Mac 安装、使用Python环境+jupyter notebook

如果想利用Python进行web项目开发等,建议使用Python基础环境+Pycharm,安装使用参考:Windows下安装、使用Pycharm教程,这下全了 和 Mac下玩转Python-安装&使用Python/PyCharm 。(现在我更喜欢开源的VS Code)

(具体步骤大家可以看上面推荐的文章)这里写个简单版本(windows下),下载好Python安装包,目前下载的是3.7版本的 ,点击下一步安装就可以了,安装好后,点击电脑左下角:开始->运行->输入cmd,然后回车即可进入windows命令行输入界面,输入 python,如果出现如下界面(图1)说明python已成功安装。
图1
在这里插入图片描述
如有错误无法运行,应该是没有设置环境变量的原因,可设置windows环境变量 如下图2。
在这里插入图片描述
图2 设置环境变量,变量值为python安装目录

2.2 安装夜神模拟器

浏览器直接访问夜神https://www.yeshen.com/,然后点击立即下载,即可下载对应的安装包,这里我也下载了一份,存储到了百度云盘,大家需要的话可以直接公众号「简说Pytho

使用Python和OpenCV进行实时物体识别,可以按照以下步骤进行: 1. 安装Python和OpenCV:首先,确保已经成功安装了Python和OpenCV库。可以使用pip工具通过终端或命令提示符运行以下命令来安装OpenCV:pip install opencv-python 2. 引入所需库:在Python脚本的开头,导入必要的库。这包括cv2和numpy。代码示例:import cv2 import numpy as np 3. 读取视频输入:使用cv2.VideoCapture函数来读取视频输入。代码示例:cap = cv2.VideoCapture(0) # 0表示摄像头 4. 加载物体图像:使用cv2.imread函数加载要识别的物体的图像。代码示例:object_image = cv2.imread("object.jpg") 5. 定义特征提取器:使用OpenCV的ORB(Oriented FAST and Rotated BRIEF)特征提取器来检测物体的关键特征点。代码示例:orb = cv2.ORB_create() 6. 提取关键特征:使用ORB特征提取器来计算物体图像的关键特征和描述符。代码示例:kp_object, des_object = orb.detectAndCompute(object_image, None) 7. 启动循环:使用一个无限循环,来进行连续的实时物体识别。代码示例:while True: 8. 读取实时视频帧:在循环中,使用cap.read()函数来读取每一帧的视频。代码示例:ret, frame = cap.read() 9. 提取当前帧的关键特征和描述符:使用ORB特征提取器来计算当前帧的关键特征和描述符。代码示例:kp_frame, des_frame = orb.detectAndCompute(frame, None) 10. 特征匹配和筛选:使用OpenCV的BFMatcher来进行关键特征的匹配,并筛选出最佳匹配。代码示例:bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des_object, des_frame) matches = sorted(matches, key=lambda x: x.distance) 11. 绘制匹配结果:使用cv2.drawMatches函数,将匹配的关键特征点在图像上进行可视化。代码示例:matched_result = cv2.drawMatches(object_image, kp_object, frame, kp_frame, matches[:10], None, flags=2) 12. 显示结果:使用cv2.imshow函数,将识别结果显示在窗口中。代码示例:cv2.imshow("Result", matched_result) 13. 退出循环:当按下键盘上的任意键时,通过cv2.waitKey函数检测并退出循环。代码示例:if cv2.waitKey(1) & 0xFF == ord('q'): break 14. 释放资源:在结束程序之前,使用cap.release()函数来释放视频输入资源。代码示例:cap.release() 15. 关闭窗口:使用cv2.destroyAllWindows函数来关闭所有的显示窗口。代码示例:cv2.destroyAllWindows() 通过按照上述步骤,就可以实现使用Python和OpenCV进行实时物体识别了。可以根据具体需求,对整个流程进行调整和优化。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值