Azkaban、Xxl-Job与Airflow对比分析

今天来对比下现在市面上开源的,用的比较多的两个调度系统airflow和azkaban的差别。
直接看表格吧:

概述

Xxl-Job

简述

XXL-JOB是一个国内轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。基于Java技术栈,调度中心与执行器通信基于作者另一个开源项目xxl-rpc,采用自建注册中心,整体架构简单明了,易于上手。

xxl-job架构图

项目地址

Github:xuxueli/xxl-job

Azkaban

简述

Azkaban为LinkedIn开源的分布式工作流调度框架,项目起源于解决Hadoop Jop依赖管理问题,但实际已经是一个通用的工作流调度框架,适用于不同业务场景。

项目地址

Github:azkaban/azkaban

Airflow

简述

Apache-Airflow 是Airbnb开源的一款数据流程工具,已经在Apache孵化成功,成为Apache的顶级项目。以非常灵活的方式来支持数据的ETL过程,同时还支持非常多的插件来完成诸如HDFS监控、邮件通知等功能。Airflow支持单机和分布式两种模式,支持Master-Slave模式,支持Mesos等资源调度,有非常好的扩展性。

Airflow架构图

项目地址

Github:apache/airflow

功能对比

功能Xxl-jobAzkabanAirflow
licenseGNU General Public License v3.0Apache License, Version 2.0Apache License, Version 2.0
调度模块QuartzQuartz自实现
调度中心HA支持,基于Quartz集群实现不支持不支持
执行器HA支持支持支持
业务耦合度高,业务逻辑在执行器中实现低,与实际业务无耦合。低,与实际业务无耦合。
Job类型JavaCommand、HadoopShell、Java、HadoopJava、Pig、Hive等,支持插件式扩展Python、Bash、HTTP、Mysql等,支持Operator的自定义扩展。
Executor触发RPCRestfulRestful
工作流无,可配置任务级联触发支持,自定义DSL语法支持,基于Python DAG
管理界面简单但不美观,符合国人习惯,上手简单简单,美观程度略胜于xxl-job,整体功能逻辑清晰,上手简单该有的功能都有,但是就是让你用得不爽。
部署运维简单简单较复杂,包括WebServer、Scheduler、Worker和Flower(可选,用于)
单点故障Web Server存在单点故障风险Scheduler存在单点故障风险。

总结分析

Xxl-Job、Azkaban与Airflow三者目标定位有所不同,Xxl-Job是一个轻量级分布式的任务调度框架,Azkaban则是为了解决Hadoop的任务依赖关系问题,而Airflow则是通用的批量数据处理。

Xxl-Job依赖于Xxl-Rpc,可以认为是一个微服务系统,调度中心是服务消费者,调度器是服务提供者,只是服务调用不是通过访问而是通过定时触发而已。

Azkaban重心则在工作流调度,通过DSL语法定义工作流,同时支持子工作流,子工作流可以在主工作流中调度,也可单独调度。

Airflow基于Dag也可以定义复杂的工作流,属于Python技术栈。
总体来说,如果是简单的定时任务调度,可以选择Xxl-Job,与主流Java框架Spring结合很好,上手简单快捷,功能够用;如果调度任务有明确的workflow,需要对workflow状态进行监控分析,则建议使用Azkaban,之所以不选择Airflow,是因为它的管理界面确实太不好用了。

### 分布式任务调度概述 分布式任务调度旨在通过合理安排任务执行顺序和资源分配来提升效率、可靠性及时效性[^1]。这种机制广泛应用于云计算环境下的批处理作业、流数据处理以及其他需要跨多节点协作完成的工作负载。 ### 实现方式和技术方案 #### 1. 基于消息队列的方式 利用Kafka、RabbitMQ等消息中间件作为通信桥梁,生产者将待办事项发送到指定主题/队列;消费者订阅这些通道并按需拉取任务进行处理。这种方式可以有效解耦前后端逻辑,并支持异步调用模式。 #### 2. 使用Zookeeper协调服务 Apache Zookeeper提供了一套简单易用的API用于构建可靠的分布式应用程序。借助它的临时节点特性,开发者可以在集群内部署一套选举机制选出领导者负责全局决策制定;其他成员则遵循指令行动从而达成一致状态管理目标。 #### 3. 集成开源调度工具 诸如AirflowAzkaban这样的项目专为复杂工作流程编排而设计,内置丰富的插件库允许用户自定义触发条件依赖关系图谱。它们通常具备良好的可视化界面便于监控进度变化情况。 ### 推荐使用的调度框架 对于寻求成熟解决方案的企业而言,采用经过实践验证过的第三方产品不失为明智之举: - **XXL-JOB**: 这是一个专注于简化Java生态下周期型计划任务部署运维难题的产品线之一[^3]。除了基本功能外还额外集成了告警推送、日志追踪等功能模块; - **Quartz Scheduler**: Java社区中最受欢迎的时间驱动引擎之一,凭借灵活配置选项深受广大开发人员喜爱。可通过CRON表达式精确控制重复间隔频率设定; - **Celery (Python)**: 如果团队主要基于Py语言栈开展业务,则可考虑集成此异步任务队列系统。它兼容多种传输协议(Redis, RabbitMQ),易于上手且性能优越。 ```python from celery import Celery app = Celery('tasks', broker='redis://localhost') @app.task def add(x, y): return x + y ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值