使用层次分析流程获得技术决策支持

本文探讨了层次分析法在技术决策中的应用,介绍如何通过成对比较、标准设定和备选方案评估来做出更好的决策。文章通过实例展示了AHP的实践过程,强调了透明度和团队共识的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

要点

概述

其他决策过程失败的地方

相关赞助内容

Forrester Wave™:用于流数据平台,Q4 2023

高性能数据架构模式白皮书

深入探讨 NoSQL 数据库索引引擎的架构(点播网络研讨会)- 立即观看

状态机的简化

流处理简介 

相关赞助商

进入层次分析法(AHP)

层次分析法的实践

层次分析法回顾

获得 Nemawashi 的认可


要点

  • 层次分析法 (AHP) 可用于做出大大小小的技术决策,对于关键决策尤其有益.
  • 层次分析法根据标准对备选方案(选项)以及标准对目标进行加权的方法有助于消除分析中的情绪.
  • 层次分析法使用备选方案和标准的成对比较来计算最终权重。 生成的可视化图表清楚地展示了每个备选方案的强度和每个标准的权重对最终决策的影响.
  • AHP 的结果很有价值,可以包含在架构决策记录 (ADR) 中,以帮助解释为什么在考虑到团队当时重视的替代方案和标准的情况下做出决定.
  • AHP 很好地映射了“nemawashi”的概念,这有助于促进购买.
  • 在遵循 AHP 时,共享最终分析图以帮助解释为何做出决策至关重要.

概述

做出重大、重要的技术决策是高级个人贡献者角色的一个关键方面。 鉴于这些决策可能产生的广泛影响,做出正确的决策至关重要。 确保决策的制定和沟通更为重要,这样才能让团队成员信任并接受决策。 否则,即使是最好的决策在执行时也永远无法充分发挥其潜力.

本文探讨了如何使用层次分析法 (AHP)(一种 20 世纪 70 年代开发的决策框架),并对其进行调整以制定大大小小的技术和非技术决策.

其他决策过程失败的地方

您过去可能使用过一些常见的决策方法。 一种是赋予最高级工程师决定权,但有时,该个人对问题的影响不够了解,无法为团队提供最佳指导.

相关赞助内容
相关赞助商

​编辑

通过单一专用数据库从任何时间序列数据(指标、事件、跟踪)中获得实时洞察. 免费试用.

另一种选择是平等的民主投票:每个人都有发言权,多数人获胜。 如果决策一致,这种方法效果很好,但这并不是最有可能的结果,尤其是对于较大的群体。 如果他们投票的选择不是最终决定,有些人会感到不安.

平等民主投票的一种变体是一种投票过程,其中在给定领域最有知识的人对最终决定有更大的影响,类似于较大的公司股东在公司事务上拥有更多的投票权。 然而,很难准确权衡所谓专家的观点与其他人的观点.

还有群体决策的智慧概念。 这已经被研究了几个世纪,研究表明它通常比一位专家的意见更准确.

文章 "利用群体智慧的正确方法" 作者:Brad DeWees 和 Julia A. Minson 强调了做出更好决策的三个关键:

  1. 应提前形成独立意见(避免锚定他人的决定)).
  2. 决策小组应提前制定决策策略.
  3. 对于面临可量化问题的团队,他们应该制定决策策略,尽可能消除流程中的人为判断.

这是三个很好的指南,但是执行它们的最佳方法是什么?

进入层次分析法(AHP)

层次分析法 (AHP) 具有三个组成部分:目标、标准和替代方案(即正在评估的选项)).

例如,假设我们的目标是选择最合适的领导者。 我们将根据四个领导标准评估潜在候选人。 对于层次分析法,每个候选者都被视为备选方案之一。 我们将进行一系列成对比较,其中涉及根据每个标准对两个候选人进行比较。 然后,我们将针对目标对每对可能的标准进行相同的成对比较练习:

让我们以三名潜在领导者组成的小组的经验标准来进一步详细说明成对比较过程。 关于成对比较,如果所比较的两个事物在所有意图和目的上都相同,则它们都被分配值 1。如果所比较的两个事物差异如此之大,以致其中一个比另一个更好或更重要,则“获胜者”将被分配一个 9。此表有助于指导选择哪个数字:

值得注意的是,偶数和小数都是有效的。 然而,小数往往只在 1.1 到 1.5 的范围内有价值,因为一旦接近 2 并超过它,微小的差异就不值得用小数来量化.

一旦你拥有了所有这些值,你就可以填写一张与此类似的表格,其中“获胜者”获得你选择的值,而“失败者”则被分配一个 1:

此时,使用每个成对比较的获胜者的获胜者值以及成对比较的失败者的倒数来建立表矩阵。 这是可以执行第一组 AHP 计算的地方,从而得出相对于给定标准的每个备选方案的优先级(即,每个候选对于该给定标准的加权值),所有优先级相加到 1:

然后,我们需要继续重复这个过程,以获得力量、魅力和正直.

然后,我们必须针对总体目标对每对标准执行相同的过程。 当我们完成这个过程时,这是一个完整的标准优先级表的示例,当我们完成该过程时:

然后,这些标准优先级值将用于正确计算每个标准的权重如何影响相对于给定标准的每个备选方案的优先级。 例如,对于“经验”标准,我们将 0.547 作为其优先级,您将在计算每个候选人的经验水平应用于做出总体决策时使用该优先级:

为了获得我们在经验方面的优先级,我们将每个人在经验方面的优先级乘以经验在总体目标方面的优先级:

我们将对每个标准重复此过程,从而得出我们用于最终计算表的数字,其中我们添加相对于每个标准的每个优先级,以确定我们的最终优先级,以及随后的最终答案:

我们认为菲奥娜将是在这个例子中领导我们的最佳人选.

层次分析法的实践

在按照最初规定进行层次分析法时,建议提前通过调查收集多个个体的数字,以免其他人影响响应,然后计算所有响应中每个人的平均值。 在康卡斯特,我们采取了略有不同的方法。 我们确实要求人们提前进行分析,但我们却聚在一起讨论我们对每个成对比较的价值观。 当数字不同时,我们进行讨论,直到就小组的官方数字达成共识.

我们发现这些讨论甚至比这个工具为我们所做的计算更有价值。 第一次采用这种方法时,在计算层次分析法结果之前,我们集体知道我们应该做出什么决定。 我们甚至说,如果 AHP 计算与我们商定的决定不一致,我们将忽略它们(事实证明它们完全同步)).

第一次使用 AHP 时我们试图做出的决定是为我们负责的遗留 Web 应用程序选择一个新的 JavaScript 框架。 我们做出该决定的标准是:

  • 社区
  • 表现
  • Redux 兼容性
  • Web 组件支持
  • 本地化功能
  • 开发人员生产力
  • 混合本机移动应用程序中的 Webview 支持

值得注意的是,这些标准当时对我们的团队至关重要,如果您的团队今天要进行同样的练习,您团队的标准很可能会有所不同。 此外,对于层次分析法,重要的是不要超过八个标准或八个替代方案。 否则,进行所有必要的成对比较可能会花费很长时间。 我们在三个可能的 JavaScript 框架之间进行选择,根据这七个标准,我们花了 5 个多小时来完成这个练习.

这是不同标准下我们的权重最终的样子:

作为我们的团队,社区和性能对我们来说是最重要的,开发人员的生产力紧随这两者.

这是我们最终的 AHP 决策图的样子:

您会注意到,我没有提及我们选择哪个框架,因为本文旨在帮助您的团队做出正确的决策,而不是复制我们多年前做出的决定。 为了帮助您的团队执行 AHP 计算并以我在本文中所做的相同方式可视化结果,我们创建的用于生成这些图表的工具已发布为 Github 上的开源软件.

层次分析法回顾

AHP 对我们和其他公司(例如 纽约时报 (看 "使用 AHP 进行集体决策" 了解《纽约时报》身份团队如何尝试层次分析流程来选择用户 ID 格式),我相信它适合您和您的团队。 自从我们最初的 JavaScript 框架 AHP 练习以来,我们的团队和 Comcast 的其他人在 AHP 的帮助下做出了许多决策。 有些是 10 分钟的快速练习,而另一些则是多天的讨论。 所有这些的不变之处在于,团队发现使用 AHP 的经验很有价值.

AHP 对于捕获文档片段非常有用。 如果您的团队产生 架构决策记录 (ADR)或其他类似文档,我们的 AHP 工具中的图表是捕捉您做出特定决定背后动机的好方法.

我收到的关于 AHP 的另一条积极反馈是,当我帮助两个在两大洲工作的独立团队决定如何共同构建两个团队将合作的下一代系统时。 他们每个人都有自己以前存在的系统,满足部分总体要求,但不是全部,他们正在决定是否采用其中一个系统作为项目的基础,或者为新系统开始一个新的绿地项目.

有人可能会说,您不需要 AHP 来确定两组工程师是否想要致力于使用现有的遗留系统或一起构建新系统,并且您可能是正确的,绿地选项始终更具吸引力。 然而,两个团队经历了这个过程,他们发现,通过这样做,团队对彼此现有的系统以及每个团队中各个工程师的优势有了很多了解。 因此,这是一次非常有价值的破冰和团队入职经历。 他们可以根据构建前两个系统的工程师的经验,战略性地规划如何构建新系统.

还值得注意的是,让一个单独的小组根据标准对备选方案进行成对比较评分,并由另一个小组根据目标对标准进行评分,这当然是有效的,并且在某些情况下更有效。 我们已经多次这样做了,让产品经理定义各种标准,并对每个标准与目标进行成对比较。 然后,工程师根据每个标准对每个备选方案进行成对比较。 根据您的决定,您可以随时调整哪些个人或团体对评估 AHP 的各个方面有意义.

获得 Nemawashi 的认可

有一次,我们面临一个会产生相当重大影响的决定,我们知道这个决定会遭到一些人的抵制,具体取决于最终的决定。 领导层适当地将此视为 AHP 会有所帮助的情况,并要求我们中的一小部分人完成练习,但要求我们最终只共享最终决策,而不共享流程背后的数据。 希望这将有助于加速整个受影响群体“不同意并承诺”的意愿,而不是争论较小群体在 AHP 计算中使用的数字.

相反,这种方法适得其反,人们对自己无法访问决策数据感到更加沮丧。 我们最终发布了完整的数据集,但那时已经太晚了.

日本的“nemawashi”概念有助于解释为什么将数据隐藏在决策背后是无效的。 在商业中,nemawashi 是一种公开建立共识而不强迫达成共识的方式,这在获得决策支持时非常强大.

nemawashi 流程始于一个想法、一个概念或一个问题陈述。 然后,您可以在预对话中确定要针对的不同人群。 这些群体包括:

  • 决策者:有权力推动或执行想法的人
  • 创客:那些将执行想法的人
  • 阻碍者:那些可能有能力阻止一个想法前进的人
  • 受影响的个人:可能是最大的群体,它包括直接或间接受到该想法影响的人

在预对话中,您的目标是告知人们、收集反馈并改进想法,使其对每个人都更好。 这些对话可以非常开放和透明。 大多数时候,它是非正式的私人讨论和更公开的讨论的结合,具体取决于参与的人。 关键是你不应该试图强行让人们改变主意。 这个对话、反馈收集和想法改进的循环一直持续到每个人都同意这个想法为止.

这导致了一次正式提出想法的会议。 由于每个人都已经参与并提前做好了准备,结果是一次低压力的会议,每个人都点头同意并决定推进这个想法.

Nemawashi 很好地映射了 AHP 流程。 nemawashi 中的想法类似于您尝试使用 AHP 做出的决策。 预对话的目标群体与您在 AHP 中需要与之交谈的群体相同,以确保正确表达想法。 进行成对比较的较小小组处理类似的信息、收集和改进过程。 那么最终的想法就类似于AHP的最终决策.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值