Python验证“哥德巴赫猜想”

文章描述了一个编程任务,要求设计一个程序来验证20亿以内的偶数是否可以表示为两个素数之和,且输出解集中p最小的组合。给出了一个Python代码示例,通过primeNum函数检查素数并寻找符合条件的分解。
摘要由CSDN通过智能技术生成

数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。

输入格式:

输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。

输出格式:

在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。

输入样例:

24

输出样例:

24 = 5 + 19
#验证哥德巴赫猜想
def primeNum (n):
    for x in range(2,n):
        if n % x == 0:
            return False
    return True
num = int(input())
for x in range(2,num):
    #如果较小数为质数
    if primeNum(x):
        #并且第二个较大数也是质数
        if primeNum(num - x):
            print(f'{num} = {x} + {num-x}')
            break

以上代码全为本人亲自手敲,可能有一些错误和不足之处,如有更好的方法和建议,欢迎您在评论区友善讨论。 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

付之一笑」༻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值