贡橙小白鼠
码龄4年
关注
提问 私信
  • 博客:24,402
    24,402
    总访问量
  • 24
    原创
  • 50,511
    排名
  • 144
    粉丝
  • 0
    铁粉

个人简介:贡橙小白鼠

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2021-09-10
博客简介:

m0_61736329的博客

查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    212
    当月
    26
个人成就
  • 获得168次点赞
  • 内容获得18次评论
  • 获得355次收藏
  • 代码片获得720次分享
创作历程
  • 2篇
    2025年
  • 11篇
    2024年
  • 11篇
    2023年
成就勋章
TA的专栏
  • 吴恩达ML练习题(Pyhton)
    11篇
  • 基于FPGA(ZYNQ-Z2)的多功能小车
    11篇
兴趣领域 设置
  • 编程语言
    c++c语言
  • 数据结构与算法
    算法数据结构
  • 嵌入式
    stm32
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CLIP模型使用方法

对比训练:在batch中计算所有图像与文本的余弦相似度,每个图文对的相似度最高,处在对角线上,其余相似度低。文本编码使用Transformer,输出[batch_size,text_feature]图像编码使用ViT,输出[batch_size,picture_feature]3.3使用CLIP训练Logistic回归模型,分类CIFAR100。首先,每个batch的图文对分别进行图像编码和文本编码。输入一张图片,设置几个类别,输出softmax概率分布。本文主要记录CLIP模型的原理,安装,基本使用。
原创
发布博客 2025.03.08 ·
312 阅读 ·
9 点赞 ·
0 评论 ·
2 收藏

Transformer模型学习

对于[batch_size,max_length,d_model]的输入,经过位置编码后输出的PE为[batch_size,max_length,d_model],与词嵌入维度相同。PE是位置编码的结果,pos指的是单词所在句子里的位置,i是索引,dmodel 是词嵌入维度。Encoder输入:[batch_size,max_length,d_model]tgt (汉语):[batch_size,max_length]④输出数据张量:将句子转化为可用于训练的数据张量。词嵌入:将原始张量嵌入到高维空间。
原创
发布博客 2025.03.06 ·
334 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

吴恩达深度学习练习题(6)——残差神经网络(ResNet)

使用ResNet实现数字手势图像识别。
原创
发布博客 2024.11.19 ·
937 阅读 ·
19 点赞 ·
0 评论 ·
25 收藏

吴恩达深度学习练习题(5)——卷积神经网络(CNN)

利用卷积神经网络实现手势数字识别: 基于要求设计一个简单的CNN: ①输入层:[64,64,3] 是大小64*64的RGB手势图像。②卷积层:卷积核设计为:[3,3,3,16]大小3*3,输入通道3,输出通道16的卷积核。 计算可得输出数据维度:[,62,62,16]。③RELU激活函数:数据维度不变。④池化层 :设计步长2,大小2*2的最大池化层。输出数据维度:[31,31,16]。⑤展平:将数据展平,大小为31*31*16 = 15376。将他作为全连接层的输入。⑥全连接层
原创
发布博客 2024.11.18 ·
534 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

吴恩达深度学习练习题(4)——优化算法

导入数据并绘制图形:数据为边界层清晰的离散坐标点。目标是预测未知点的颜色并绘制边界层。这个已经在之前实现,这次主要任务是使用不同的优化算法,选择效果最优秀的优化算法。
原创
发布博客 2024.11.13 ·
366 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

吴恩达深度学习练习题(3)——随机初始化与正则化

导入数据后绘制图像如下:数据是红蓝边界明显的二维坐标点。我们需要做的是搭建神经网络实现对点颜色的预测,并绘制边界层将他们分开。
原创
发布博客 2024.11.13 ·
392 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

吴恩达深度学习练习题(2)——DNN识别小猫

输入模型的parameters和输入特征X,返回预测结果以及前向传播过程中的缓存结果(A1Z1,A2Z2,A3Z3,反向传播中用来计算)。从输入到输出的前向传播有四步,也就是说返回的parameters有W1,b1,W2,b2,W3,b3,W4,b4这八个参数。输入预测的结果AL,train_y,以及前向传播的缓冲数据,可以计算出每一层的梯度。设置迭代次数,前向传播反向传播计算出损失和梯度,使用梯度下降算法更新参数,不断迭代。导入数据,X为64*64的RGB图像,Y为是否是小猫,0为否,1为是。
原创
发布博客 2024.11.07 ·
375 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

吴恩达深度学习练习题(1)——Logistic回归识别小猫

作业提供了数据集,加载后数据形状如下: 需要进行以下处理:①输入特征扁平化:将RGB图像转为一维的灰度值②输入特征标准化:将0-255的灰度值缩放到0-1之间代码如下: 2.正反向传播正向传播计算出估计值,反向传播计算出梯度。同时计算交叉熵损失,代码如下: 3.梯度下降优化器在计算出梯度后,使用梯度下降算法对模型参数进行优化。同时记录loss,在收敛后不再迭代,之后绘制图像。代码如下: 最后在5415轮迭代时收敛,loss为0.058。尽管已经对特征进行了标准化,学习率
原创
发布博客 2024.11.04 ·
438 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

吴恩达机器学习练习题(5)——反向传播神经网络实现手写数字识别

这次的作业是搭建神经网络,并通过反向传播训练模型,实现手写数字识别。
原创
发布博客 2024.10.24 ·
983 阅读 ·
19 点赞 ·
0 评论 ·
22 收藏

吴恩达机器学习练习题(4)——神经网络

这次作业是使用神经网络实现手写数字识别。要求为使用给出的训练好的参数对结果进行预测。
原创
发布博客 2024.10.22 ·
508 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

吴恩达机器学习练习题(3)——One-vs-All Logistic回归

作业的目标是实现手写数字识别,使用OvA Logistic回归方式实现。作业提供了两个文件,其中分别包含X[5000,400]与Y[5000,1]。其中X的含义是:5000张20*20的手写数字灰度值数据,以列的方式保存在mat文件中。Y的含义是:5000张手写数据对应的结果,以mat文件保存。
原创
发布博客 2024.10.22 ·
547 阅读 ·
16 点赞 ·
0 评论 ·
5 收藏

吴恩达机器学习练习题(2)——logistic回归

作业1的目标是根据两门成绩与是否录取的历史数据,对将来的录取结果进行预测。作业2的目标是根据芯片的两组测试结果与合格程度,对芯片是否合格进行预测。
原创
发布博客 2024.10.20 ·
517 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

吴恩达机器学习练习题(1)——线性回归

吴恩达机器学习练习题,使用Pyhton实现。
原创
发布博客 2024.10.18 ·
646 阅读 ·
5 点赞 ·
1 评论 ·
5 收藏

FPGA综合项目PCB文件

发布资源 2023.06.20 ·
json

FPGA多功能小车 PCB原理图

发布资源 2023.06.20 ·
json

基于FPGA(PYNQ-7020)的多功能小车

发布资源 2023.06.20 ·
zip

10—基于FPGA(ZYNQ-Z2)的多功能小车—软件设计—顶层代码

实例化蓝牙、超声波、电机模块,在always块中实时判断蓝牙的信息进行模式选择,在遥控模式中实时判断红外遥控的信息遥控小车,最后的代码是在ila中debug,实际没有用。在之前的文章中具体控制代码已经全部进行了分析与解释,顶层模块进行模块的输入输出的定义、内部变量的定义、模块的实例化与蓝牙信号的判断。整体Arduino代码如下;
原创
发布博客 2023.06.20 ·
496 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

9—基于FPGA(ZYNQ-Z2)的多功能小车—拓展功能—OpenMV的色块识别

对于色块识别功能,我想让OpenMV检测色块,在数码管上显示。OpenMV的通信也是串口通信,实现比较耗时。由于之前的红外遥控已经外接了Arduino,因此我依然借助Arduino对红绿蓝进行编码,使用两个IO实现信息传递,在FPGA上进行译码,最后根据对应的信息实现数码管显示。
原创
发布博客 2023.06.19 ·
987 阅读 ·
0 点赞 ·
1 评论 ·
7 收藏

8—基于FPGA(ZYNQ-Z2)的多功能小车—软件设计—寻迹模块、寻光模块、跟随模块

寻迹模块的实现需要两个TCRT5000传感器。简单地说,检测到黑线输出低电平,检测到白线输出高电平。因此两个TCRT5000放在黑色地面的白线循迹线左右,左边检测到白线左转,右边检测到白线右转,都是黑的前进,都是白线停止。算法比较容易实现。
原创
发布博客 2023.06.19 ·
1048 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

7—基于FPGA(ZYNQ-Z2)的多功能小车—软件设计—红外遥控

这种方式的优点是设计十分简单粗暴,同时能实现通信,但是缺点也十分明显。需要占用大量的IO口,并且需要外置单片机进行解码。其实就相当于脱裤子放屁,不过因为时间与水平有限,这也是一种折中的实现方法。红外遥控的实现由于时间有限,并且协议的难度也比较大,因此我们借助于Arduino对信息进行解码,再通过自己编码实现红外遥控。简单的解码,判断mode的值。FPGA只能0-1信号,因此可以用n个IO口进行编码,总共有。个信息的编码,在Vivado中进行解码,便可实现通信。str的值需要根据实际测试。
原创
发布博客 2023.06.19 ·
684 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多