论文信息
题目:
LiDAR SLAM With Planes,Lines,and Cylinders
激光雷达与平面,线和圆柱体SLAM
论文地址:
https://ieeexplore.ieee.org/abstract/document/9787712
-
发表期刊:
- IEEE Robotics and Automation Letters ( Volume: 7, Issue: 3, July 2022)
标签
激光SLAM的新方法,新的特征提取方法
摘要
平面、直线和圆柱体广泛存在于人造环境中。本文介绍了一种利用这三种类型地标的激光雷达同步本地化和测绘(SLAM)系统。该算法由局部映射、全局映射和定位三个部分组成。局部和全局映射通过LiDAR姿态联合调整平面、直线和柱面,以最小化点到模型的成本,即平面-直线-柱面调整(PLCA)。我们证明,经过一定的预处理,PLCA与这三种类型的标志点的上限数量无关,这使得高效解决大规模的PLCA问题成为可行的。定位组件通过将局部平面、直线和圆柱注册到全局平面、直线和圆柱来进行实时姿态估计,这被称为平面-直线-圆柱注册(PLCR)。我们提出了一种有效的PLCR解决方案。检测和数据关联可能会引入错误。我们通过检查后台的成本来纠正这些错误。基于配准的算法(如LOAM和ICP)很难纠正这些错误,因为它们没有维护数据关联。实验结果表明,该算法优于目前最先进的激光雷达SLAM算法,达到了实时性。
内容简介
本文的贡献如下:我们证明了,通过一些预处理,局部和全局PLCA的迭代最小化与从平面、直线和柱面捕获的点的数量无关。由于这些物体是无界的,因此激光雷达扫描可以从中捕获许多点。该算法使求解大规模PLCA问题变得可行。我们为PLCR提供了一种有效的解决方案。我们采用一阶泰勒展开来近似旋转,假设后续两次扫描之间有一个小旋转,这通常是正确的。如果出现快速旋转运动,则迭代此步骤。我们的算法可以容忍一定的检测误差。由于LiDAR点云的遮挡性和稀疏性,检测过程中容易引入误差,如图1和图2所示。在LOAM和ICP等注册框架中很难解决这个问题,因为数据关联没有得到很好的维护。我们的算法通过检查后端的开销来纠正检测错误。
评价
在这封信中,我们介绍了一种新的激光雷达SLAM算法,使用平面、直线和圆柱体。我们证明,通过一些预处理,局部和全局PLCA的最小化与从平面、直线和圆柱捕获的点的数量无关。此外,我们提出了一种有效的PLCR问题的解决方案。检测可能会引入错误,这对于基于配准的方法是有问题的。我们的算法检查并纠正后端的错误。实验结果表明,该算法在实时性方面优于现有算法。
1705

被折叠的 条评论
为什么被折叠?



