CUDA Cooperative Groups 例子

CUDA Cooperative Groups 例子

CUDA Cooperative Groups是CUDA编程模型中引入的一组高级特性,旨在提供更灵活的线程组织和同步机制。通过Cooperative Groups,开发者可以在不同层次上组织线程,并执行更高效的并行操作。包括:

  • 网格组(Grid Group):包含整个网格中所有线程的组。
  • 线程块组(Block Group):包含线程块中所有线程的组。
  • 瓦片组(Tile Group):将线程块划分为更小的线程子组,称为瓦片。

下文包含的测例:

  • 测试一:借助grid_group同步,将tid=0的数据复制给其它线程
  • 测试二:借助thread_block_tile同步,将每个thread block中的数据倒排
  • 测试三:tile内和
  • 测试四:tile内广播

一.复现步骤

tee cooperative_groups.cu<<-'EOF'
#include <iostream>
#include <cuda_runtime.h>
#include <iostream>
#include <stdio.h>
#include <assert.h>
#include <cstdio>
#include <cuda.h>

#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>

namespace cg = cooperative_groups;

#define CHECK_CUDA(call)                      \
  do {                              \
    cudaError_t err = call;                  \
    if (err != cudaSuccess) {                 \
      std::cerr << "CUDA error at " << __FILE__ << ":" << __LINE__; \
      std::cerr << " code=" << err << " (" << cudaGetErrorString(err) << ")" << std::endl; \
      exit(EXIT_FAILURE);                  \
    }                             \
  } while (0)

__device__ float gdata = 0;

/*
测试一:借助grid_group同步,将tid=0的数据复制给其它线程
*/
__global__ void case_0(float *iodata)
{
  unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
  cg::grid_group grid = cg::this_grid();  
  if(tid==0) gdata=iodata[tid];
  grid.sync();
  iodata[tid]=gdata;
}

/*
测试二:借助thread_block_tile同步,将每个thread block中的数据倒排
*/
__global__ void case_1(float *iodata)
{
  __shared__ float sharedData[256];
  unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
  cg::thread_block block = cg::this_thread_block();
  sharedData[threadIdx.x] = iodata[tid];
  block.sync();
  iodata[tid]=sharedData[blockDim.x-1-threadIdx.x];
}

/*
测试三:tile内和
*/
__global__ void case_2(float *iodata)
{
  unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
  cg::thread_block block = cg::this_thread_block();
  cg::thread_block_tile<2> tile2 = cg::tiled_partition<2>(block);
  float sum = cg::reduce(tile2, iodata[tid], cg::plus<float>());
  tile2.sync();
  iodata[tid]=sum;
}

/*
测试三:tile内交换数据
*/
__global__ void case_3(float *iodata)
{
  unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
  cg::thread_block block = cg::this_thread_block();
  cg::thread_block_tile<2> tile2 = cg::tiled_partition<2>(block);
  float nextValue = tile2.shfl(iodata[tid], (tile2.thread_rank() + 1) % tile2.size());
  tile2.sync();
  iodata[tid]=nextValue;
}

/*
测试四:tile内广播
*/
__global__ void case_4(float *iodata)
{
  unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;
  cg::thread_block block = cg::this_thread_block();
  cg::thread_block_tile<4> tile4 = cg::tiled_partition<4>(block);
  float value;
  //lane 1广播给其它lane
  if (tile4.thread_rank() == 1) {
     value = iodata[tid];
  }  
  value = tile4.shfl(value, 1);
  tile4.sync();
  iodata[tid]=value;
}

int main(int argc,char *argv[])
{
  int deviceid=0;cudaSetDevice(deviceid); 
  {
      printf(" ----------------- case 0 ----------------- \n");
      int block_count=4;
      int block_size=4;
      int thread_size=block_count*block_size;
      float *iodata;
      CHECK_CUDA(cudaHostAlloc(&iodata,thread_size*sizeof(float),cudaHostAllocDefault));  
      for(int i=0;i<thread_size;i++) iodata[i]=i+100;
      void *kernelArgs[] = {&iodata};
      cudaLaunchCooperativeKernel((void*)case_0, block_count, block_size, kernelArgs);
      CHECK_CUDA(cudaDeviceSynchronize());
      for(int i=0;i<thread_size;i++)
      {
        printf("tid:%02d %6.2f\n",i,iodata[i]);
      }
      CHECK_CUDA(cudaFreeHost(iodata));
  }
  {
      printf(" ----------------- case 1 ----------------- \n");
      int block_count=2;
      int block_size=4;
      int thread_size=block_count*block_size;
      float *iodata;
      CHECK_CUDA(cudaHostAlloc(&iodata,thread_size*sizeof(float),cudaHostAllocDefault));  
      for(int i=0;i<thread_size;i++) iodata[i]=i+100;
      void *kernelArgs[] = {&iodata};
      cudaLaunchCooperativeKernel((void*)case_1, block_count, block_size, kernelArgs);
      CHECK_CUDA(cudaDeviceSynchronize());
      for(int i=0;i<thread_size;i++)
      {
        printf("tid:%02d %6.2f\n",i,iodata[i]);
      }
      CHECK_CUDA(cudaFreeHost(iodata));
  }  
  {
      printf(" ----------------- case 2 ----------------- \n");
      int block_count=2;
      int block_size=8;
      int thread_size=block_count*block_size;
      float *iodata;
      CHECK_CUDA(cudaHostAlloc(&iodata,thread_size*sizeof(float),cudaHostAllocDefault));  
      for(int i=0;i<thread_size;i++) iodata[i]=i;
      void *kernelArgs[] = {&iodata};
      cudaLaunchCooperativeKernel((void*)case_2, block_count, block_size, kernelArgs);
      CHECK_CUDA(cudaDeviceSynchronize());
      for(int i=0;i<thread_size;i++)
      {
        printf("tid:%02d %6.2f\n",i,iodata[i]);
      }
      CHECK_CUDA(cudaFreeHost(iodata));
  }    
  {
      printf(" ----------------- case 3 ----------------- \n");
      int block_count=2;
      int block_size=8;
      int thread_size=block_count*block_size;
      float *iodata;
      CHECK_CUDA(cudaHostAlloc(&iodata,thread_size*sizeof(float),cudaHostAllocDefault));  
      for(int i=0;i<thread_size;i++) iodata[i]=i;
      void *kernelArgs[] = {&iodata};
      cudaLaunchCooperativeKernel((void*)case_3, block_count, block_size, kernelArgs);
      CHECK_CUDA(cudaDeviceSynchronize());
      for(int i=0;i<thread_size;i++)
      {
        printf("tid:%02d %6.2f\n",i,iodata[i]);
      }
      CHECK_CUDA(cudaFreeHost(iodata));
  }
  {
      printf(" ----------------- case 4 ----------------- \n");
      int block_count=2;
      int block_size=8;
      int thread_size=block_count*block_size;
      float *iodata;
      CHECK_CUDA(cudaHostAlloc(&iodata,thread_size*sizeof(float),cudaHostAllocDefault));  
      for(int i=0;i<thread_size;i++) iodata[i]=i;
      void *kernelArgs[] = {&iodata};
      cudaLaunchCooperativeKernel((void*)case_4, block_count, block_size, kernelArgs);
      CHECK_CUDA(cudaDeviceSynchronize());
      for(int i=0;i<thread_size;i++)
      {
        printf("tid:%02d %6.2f\n",i,iodata[i]);
      }
      CHECK_CUDA(cudaFreeHost(iodata));
  }  
}
EOF
/usr/local/cuda/bin/nvcc -std=c++17 -arch=sm_86 -lineinfo -o cooperative_groups cooperative_groups.cu \
 -I /usr/local/cuda/include -L /usr/local/cuda/lib64 -lcuda
./cooperative_groups

二.输出

 ----------------- case 0 -----------------
tid:00 100.00
tid:01 100.00
tid:02 100.00
tid:03 100.00
tid:04 100.00
tid:05 100.00
tid:06 100.00
tid:07 100.00
tid:08 100.00
tid:09 100.00
tid:10 100.00
tid:11 100.00
tid:12 100.00
tid:13 100.00
tid:14 100.00
tid:15 100.00
 ----------------- case 1 -----------------
tid:00 103.00
tid:01 102.00
tid:02 101.00
tid:03 100.00
tid:04 107.00
tid:05 106.00
tid:06 105.00
tid:07 104.00
 ----------------- case 2 -----------------
tid:00   1.00
tid:01   1.00
tid:02   5.00
tid:03   5.00
tid:04   9.00
tid:05   9.00
tid:06  13.00
tid:07  13.00
tid:08  17.00
tid:09  17.00
tid:10  21.00
tid:11  21.00
tid:12  25.00
tid:13  25.00
tid:14  29.00
tid:15  29.00
 ----------------- case 3 -----------------
tid:00   1.00
tid:01   0.00
tid:02   3.00
tid:03   2.00
tid:04   5.00
tid:05   4.00
tid:06   7.00
tid:07   6.00
tid:08   9.00
tid:09   8.00
tid:10  11.00
tid:11  10.00
tid:12  13.00
tid:13  12.00
tid:14  15.00
tid:15  14.00
 ----------------- case 4 -----------------
tid:00   1.00
tid:01   1.00
tid:02   1.00
tid:03   1.00
tid:04   5.00
tid:05   5.00
tid:06   5.00
tid:07   5.00
tid:08   9.00
tid:09   9.00
tid:10   9.00
tid:11   9.00
tid:12  13.00
tid:13  13.00
tid:14  13.00
tid:15  13.00
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi20240217

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值