LeetCode—338. 比特位计数

方式一:

最容易想到的代码

class Solution {
    public int[] countBits(int n) {
        int[] ans = new int[n+1];
        for(int i=0;i<=n;i++){
            ans[i]= Integer.bitCount(i);
        }
        return ans;
    }
}

方式二:

对于所有的数字,只有两类:

  • 1、奇数:二进制表示中,奇数一定比前面那个偶数多一个 1,因为多的就是最低位的 1。
          举例: 
         0 = 0       1 = 1
         2 = 10      3 = 11
  • 2、偶数:二进制表示中,偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的。
           举例:
          2 = 10       4 = 100       8 = 1000
          3 = 11       6 = 110       12 = 1100

另外,0 的 1 个数为 0,于是就可以根据奇偶性开始遍历计算了。

代码如下:

class Solution {
    public int[] countBits(int n) {
        int[] ans = new int[n+1];
        ans[0] = 0;
        for(int i =1;i<=n;i++){
            if(i%2 == 1){
                ans[i] = ans[i-1] +1;
            }else{
                ans[i] = ans[i/2];
            }
        }
        return ans;
    }
}

方式三

Brian Kernighan 算法

  • 最直观的做法是对从0n的每个整数直接计算「一比特数」。每个int 型的数都可以用32位二进制数表示,只要遍历其二进制表示的每一位即可得到1的数目。

  • 利用Brian Kernighan算法,可以在一定程度上进一步提升计算速度。Brian Kernighan 算法的原理是:对于任意整数x,令x=x & (x−1),该运算将x的二进制表示的最后一个1变成0。因此,对x重复该操作,直到x变成0,则操作次数即为x的「一比特数」。

  • 对于给定的n,计算从0到n的每个整数的「一比特数」的时间都不会超过 O(log⁡n),因此总时间复杂度为 O(nlog⁡n)

代码如下:

class Solution {
    public int[] countBits(int n) {
        int[] bits = new int[n + 1];
        for (int i = 0; i <= n; i++) {
            bits[i] = countOnes(i);
        }
        return bits;
    }

    public int countOnes(int x) {
        int ones = 0;
        while (x > 0) {
            x &= (x - 1);
            ones++;
        }
        return ones;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>