二叉树进阶 --- 上

目录

1. 二叉搜索树的概念及结构

1.1. 二叉搜索树的概念

1.2. 二叉搜索树的结构样例

2. 二叉搜索树的实现

2.1. insert 的非递归实现

2.2. find 的非递归实现

2.3. erase 的非递归实现

2.3.1. 第一种情况:所删除的节点的左孩子为空

2.3.1.1. 错误的代码

2.3.1.2. 正确的代码

2.3.2. 第二种情况:所删除的节点的右孩子为空

2.3.2.1. 正确的代码

2.3.3. 第三种情况:所删除的节点有两个非空节点 && 找右子树的最左节点

2.3.3.1. 有错误的代码

2.3.3.2. 正确的代码

2.3.4. erase的完整实现如下


1. 二叉搜索树的概念及结构

学习二叉搜索树的一些原因:

  • map 和 set 特性需要先铺垫二叉搜索树,而二叉搜索树也是一种树形结构;
  • 二叉搜索树的特性了解,有助于更好的理解 map 和 set 的特性。

1.1. 二叉搜索树的概念

二叉搜索树(Binary Search Tree,简称BST) 又名为二叉排序树或者是二叉查找树。它可能是一棵空树,或者是满足下面性质的二叉树:

  • 如果它的左子树不为空,那么左子树上的所有节点的值都要小于根节点的值;
  • 如果它的右子树不为空,那么右子树上的所有节点的值都要大于根节点的值;
  • 它的左右子树也是一颗二叉搜索树。

对于一颗二叉搜索树,它的中序遍历可以得到有序的数据;

需要注意的是,二叉搜索树要求每个节点的值都唯一,如果存在重复的值,可以在节点中添加计数器来解决。

1.2. 二叉搜索树的结构样例

一棵树是否是一颗二叉搜索树,必须要符合二叉搜索树的性质。

 为了更好地理解二叉搜索树,我们需要其进行模拟实现:

2. 二叉搜索树的实现

2.1. insert 的非递归实现

对于二叉搜索树的插入,我们需要满足插入后的二叉树仍旧是一颗二叉搜索树,也就是说,插入的元素必须要被插入到特定的位置,以维持二叉搜索树的结构。如上图所示,如果要插入14,那么它的位置是确定的,如下图所示: 

因此 insert 的具体实现我们可以分解为两个过程:

  • 第一步:找到要插入元素的位置;
  • 第二步:插入元素,完成连接关系。 

注意:在这里实现的二叉搜索树的每个值具有唯一性,相同值不插入。

bool insert(const T& key)
{
	// 1. 如果是空树,直接对_root赋值即可,插入成功并返回true
	if (_root == nullptr)
	{
		_root = new Node(key);
		return true;
	}
	else
	{
		// step 1: 先找目标位置
		Node* cur = _root;
		// 为了更好的连接新节点, 因此记录父节点
		Node* parent = nullptr;

		while (cur)
		{
			// 如果当前节点的Key大于目标Key
			// 当前节点应该向左子树走
			if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			// 如果当前节点的Key小于目标Key
			// 当前节点应该向右子树走
			else if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				// 找到了相同的 key, 在这里不插入
				return false;
			}
		}

		// cur 走到了空, 即 cur 就是合适的位置
		cur = new Node(key);
		// 我们需要判断cur是parent的左节点还是右节点
		// 如果key小于parent的key,那么插入左节点
		if (key < parent->_key)
			parent->_left = cur;
		// 反之连接到右节点
		else
			parent->_right = cur;
		return true;
	}
}

2.2. find 的非递归实现

find 就很简单了,没什么要说的,根据传递的 key 进行判断,大于当前节点,那么当前节点向左走,反之向右走,如果相等,返回true,循环结束,则说明没有这个key,实现如下:

bool find(const T& key)
{
	// 1. 从根节点开始
	Node* cur = _root;
	while (cur)
	{
		// 2. 如果当前关键字大于目标关键字,那么向左子树走
		if (cur->_key > key)
			cur = cur->_left;
		// 3. 如果小于目标关键字,那么向右子树走
		else if (cur->_key < key)
			cur = cur->_right;
		// 4. 相等,就返回true
		else
			return true;
	}
	// 5. 循环结束,说明没找到, 返回false
	return false;
}

2.3. erase 的非递归实现

对于搜索二叉树来说,真正有一些难度的是删除,对于删除我们可以分解为不同的情况,根据对应的情况,以特点方式解决。

在这里我们分为三种情况:

  • 所删除的节点的左孩子为空:托孤法删除;
  • 所删除的节点的右孩子为空:托孤法删除;
  • 所删除的节点的有两个非空孩子:替代法删除。

注意:对于叶子结点的处理可以归为第一类情况或者第二类情况。

为了可以更好的理解上面的三种情况,我们用图来说话:

2.3.1. 第一种情况:所删除的节点的左孩子为空

如图所示:假如现在我们要删除的节点是15节点,可以发现它的左孩子为空,那么如何删除呢?

 我们的方法是托孤法删除,什么叫托孤法删除呢?

就是将15的非空孩子(在这里就是19)交给它的父亲节点(在这里就是8),如图所示:

注意:在这里一定是父亲节点的右孩子指向被删除的节点的非空孩子吗?

答案是,不一定,我们需要根据被删除节点和父亲节点的关系判断:

  • 如果被删除节点是父亲节点的右孩子,那么在这里就是父亲节点的右孩子指向被删除节点的非空节点;
  • 如果被删除节点是父亲节点的左孩子,那么在这里就是父亲节点的左孩子指向被删除节点的非空节点。

代码如下:

2.3.1.1. 错误的代码
// 第一种情况: 所删除的节点的左孩子为空
if (del->_left == nullptr)
{
	if (del_parent->_left == del)
	{
		del_parent->_left = del->_right;
	}
	else
	{
		del_parent->_right = del->_right;
	}
	delete del;
    del = nullptr;
}

可能我们认为这段代码没问题,但是如果是下面这种情况呢?  

如果我此时要删除8,而8是这棵树的根节点,它是没有父节点的,那么此时上面的代码就会崩溃;

为了解决这个隐患,我们的方案就是,如果被删除节点是根,且它的左子树为空树,那么我们更新根节点即可,在这里就是让15做根节点。

2.3.1.2. 正确的代码
//第一种情况:所删除的节点的左孩子为空
if (del->_left == nullptr)
{
	// 如果被删除节点是根,那么更新根即可
	if (del == _root)
	{
		Node* newroot = del->_right;
		delete _root;
		_root = newroot;
	}
	// 被删除节点是非根节点
	else
	{
		if (del_parent->_left == del)
		{
			del_parent->_left = del->_right;
		}
		else
		{
			del_parent->_right = del->_right;
		}
		delete del;
	}
}

2.3.2. 第二种情况:所删除的节点的右孩子为空

如图所示:假如现在我们要删除的节点是6节点,可以发现它的右孩子为空,那么如何删除呢?

方案依旧是托孤法删除,在这里就是将6(被删除节点)的5(非空孩子节点)交给4(父亲节点) ,如下:

 处理细节,和第一种情况大同小异。

需要注意的就是:最后父亲节点连接非空孩子节点的时候,要根据被删除节点是父亲节点的左孩子还是右孩子来判断。

第二种情况和第一种情况大同小异,也需要对根节点进行特殊处理:

代码如下:

2.3.2.1. 正确的代码
//第二种情况:所删除的节点的右孩子为空
else if (del->_right == nullptr)
{
    // 当被删除节点为根节点
	if (del == _root)
	{
		Node* newroot = del->_left;
		delete del;
		_root = newroot;
	}
    //当被删除节点为非根节点
	else
	{
		if (del_parent->_left == del)
		{
			del_parent->_left = del->_left;
		}
		else
		{
			del_parent->_right = del->_left;
		}
		delete del;
        del = nullptr;
	}
}

2.3.3. 第三种情况:所删除的节点有两个非空节点 && 找右子树的最左节点

较为复杂的就是第三种情况了,由于被删除的节点有两个孩子,因此无法托孤,因为父亲节点至多只能管理两个孩子,所以我们又提出了新的解决方案:替代法删除

如图所示:

假如现在我们要删除4所在的节点,可以发现,4所在的节点有两个孩子,因此无法托孤,那么我们需要采用替代法删除,替代法删除就是在左子树或者右子树找一个"合适节点",将4所在的节点的key进行覆盖,将删除4所在的节点转化为删除我们找的这个"合适节点"。

而这个"合适节点"通常只有两个:

  • 其一:以被删除的节点所在的二叉树开始,左子树的最大节点,即左子树的最右(大)节点;
  • 其二:以被删除的节点所在的二叉树开始,右子树的最小节点,即右子树的最左(小)节点。

而我们在这里就找右子树的最左(小)节点,注意,要从被删除的节点开始,在这里就是5;

当找到这个 "合适节点" 后,交换它与要删除节点的 Key;

此时就将删除目标节点转换为删除这个 "合适节点" 了;

因为此时这个 "合适节点" 只会有两种情况:

  • 第一种:它没有孩子,即左右子树为空;
  • 第二种:它只有一个孩子,且只可能是右孩子,因为这个 "合适节点" 是右子树的最左节点;

如果是第一种,即没有孩子,我们也可以将其归类为第二种情况,即右孩子不为空 && 左孩子为空,因此,可以用统一的方式处理,即托孤法删除 (所删除的节点的左孩子为空)。

故我们的大致步骤如下:

  1. 找合适节点;
  2. 交换合适节点和删除节点的 Key;
  3. 托孤发删除合适节点。

如图所示:

2.3.3.1. 有错误的代码
// 第三种情况:所删除的节点有两个非空节点
else
{
	// 从被删除结点开始, 找右子树的最小(左)节点
	Node* right_min = del->_right;
	// 并记录这个节点的父亲节点
    // 有可能这里我们会习惯的从nullptr开始,但是对于某些特殊情况会崩溃
	Node* right_min_parent = nullptr;
	while (right_min->_left)
	{
		right_min_parent = right_min;
		right_min = right_min->_left;
	}
	// 交换这个节点和要删除节点的 key
	std::swap(del->_key, right_min->_key);

	// 将删除 del 转化为删除 right_min (托孤法删除)
	if (right_min_parent->_left == right_min)
		right_min_parent->_left = right_min->_right;
	else
		right_min_parent->_right = right_min->_right;
	delete right_min;
	right_min = nullptr;
}

如果我们将"合适节点"的父节点初始值设为nullptr,那么在下面的场景会发生崩溃:

由于此时,这个 "合适节点" 正好是 del->_right,不会进入循环,那么 right_min_parent 就是空,那么后面的操作就会对空指针进行解引用,非法操作,进程崩溃。

因此这里的 right_min_parent 的初始值可以从 del 开始,不可以将初始值设为空。

同时,我们发现,最后进行托孤法删除时,我们也进行了判断,这样的原因是因为这个"合适节点"既可能是父节点的左孩子,也可能是父节点的右孩子,因此必须判断。

2.3.3.2. 正确的代码
// 第三种情况:所删除的节点有两个非空节点
else
{
	// 从被删除结点开始, 找右子树的最小(左)节点
	Node* right_min = del->_right;
	// 并记录这个节点的父亲节点, 让其从del开始
	Node* right_min_parent = del;
	while (right_min->_left)
	{
		right_min_parent = right_min;
		right_min = right_min->_left;
	}
	// 交换这个节点和要删除节点的 key
	std::swap(del->_key, right_min->_key);

	// 将删除 del 转化为删除 right_min (托孤法删除)
	if (right_min_parent->_left == right_min)
		right_min_parent->_left = right_min->_right;
	else
		right_min_parent->_right = right_min->_right;
	delete right_min;
	right_min = nullptr;
}

以此类推,我们也可以找左子树的最大(右)节点,代码如下: 

else
{
    // 从被删除节点开始, 找左子树的最大(右)节点
    Node* left_max = del->_left;
    // 并记录这个节点的父亲节点, 让其从del开始
    Node* left_max_parent = del;
    while (left_max->_right)
    {
    	left_max_parent = left_max;
    	left_max = left_max->_right;
    }
    // 交换这个节点和要删除节点的 key
    std::swap(del->_key, left_max->_key);

    // 将删除 del 转化为删除 left_max (托孤法删除)
    if (left_max_parent->_left == left_max)
    	left_max_parent->_left = left_max->_left;
    else
    	left_max_parent->_right = left_max->_left;
    delete left_max;
    left_max = nullptr;
}

最后,我们将第三种情况汇总,第一种是找右子树的最左节点,第二种是找左子树的最右节点,如下:

else 
{
	// 从被删除节点开始, 找右子树的最小(左)节点 || 找左子树的最大(右)节点
	if (del->_right)
		_erase_right_min_node(del);
	else
		_erase_left_max_node(del);
}

void _erase_right_min_node(Node* del) 
{
	// 从被删除结点开始, 找右子树的最小(左)节点
	Node* right_min = del->_right;
	// 并记录这个节点的父亲节点, 让其从del开始
	Node* right_min_parent = del;
	while (right_min->_left)
	{
		right_min_parent = right_min;
		right_min = right_min->_left;
	}
	// 交换这个节点和要删除节点的 key
	std::swap(del->_key, right_min->_key);

	// 将删除 del 转化为删除 right_min (托孤法删除)
	if (right_min_parent->_left == right_min)
		right_min_parent->_left = right_min->_right;
	else
		right_min_parent->_right = right_min->_right;
	delete right_min;
	right_min = nullptr;
}

void _erase_left_max_node(Node* del)
{
	// 从被删除节点开始, 找左子树的最大(右)节点
	Node* left_max = del->_left;
	// 并记录这个节点的父亲节点, 让其从del开始
	Node* left_max_parent = del;
	while (left_max->_right)
	{
		left_max_parent = left_max;
		left_max = left_max->_right;
	}
	// 交换这个节点和要删除节点的 key
	std::swap(del->_key, left_max->_key);

	// 将删除 del 转化为删除 left_max (托孤法删除)
	if (left_max_parent->_left == left_max)
		left_max_parent->_left = left_max->_left;
	else
		left_max_parent->_right = left_max->_left;
	delete left_max;
	left_max = nullptr;
}

2.3.4. erase的完整实现如下

bool erase(const T& key)
{
	// 先找要删除的节点
	Node* del = _root;
	Node* del_parent = nullptr;

	while (del)
	{
		if (del->_key < key)
		{
			del_parent = del;
			del = del->_right;
		}
		else if (del->_key > key)
		{
			del_parent = del;
			del = del->_left;
		}
		else
		{
			// 锁定了要删除的节点
			// 分三种情况:
			// case 1: 左子树为空
			if (del->_left == nullptr)
			{
				// 如果要删除的节点是根
				if (del == _root)
				{
					Node* newroot = del->_right;
					delete _root;
					_root = newroot;
				}
				else
				{
					// 托孤法删除
					if (del_parent->_left == del)
						del_parent->_left = del->_right;
					else
						del_parent->_right = del->_right;
					delete del;
					del = nullptr;
				}
			}
			// case 2: 右子树为空
			else if (del->_right == nullptr)
			{
				if (_root == del)
				{
					Node* newroot = del->_left;
					delete _root;
					_root = newroot;
				}
				else
				{
					if (del_parent->_left == del)
						del_parent->_left = del->_left;
					else
						del_parent->_right = del->_left;
					delete del;
					del = nullptr;
				}
			}
			// case 3: 左右子树都不为空
			else 
			{
				// 从被删除节点开始, 找右子树的最小(左)节点 || 找左子树的最大(右)节点
				if (del->_right)
					_erase_right_min_node(del);
				else
					_erase_left_max_node(del);
			}
			return true;
		}
	}

	return false;
}

void _erase_right_min_node(Node* del) 
{
	// 从被删除结点开始, 找右子树的最小(左)节点
	Node* right_min = del->_right;
	// 并记录这个节点的父亲节点, 让其从del开始
	Node* right_min_parent = del;
	while (right_min->_left)
	{
		right_min_parent = right_min;
		right_min = right_min->_left;
	}
	// 交换这个节点和要删除节点的 key
	std::swap(del->_key, right_min->_key);

	// 将删除 del 转化为删除 right_min (托孤法删除)
	if (right_min_parent->_left == right_min)
		right_min_parent->_left = right_min->_right;
	else
		right_min_parent->_right = right_min->_right;
	delete right_min;
	right_min = nullptr;
}
void _erase_left_max_node(Node* del)
{
	// 从被删除节点开始, 找左子树的最大(右)节点
	Node* left_max = del->_left;
	// 并记录这个节点的父亲节点, 让其从del开始
	Node* left_max_parent = del;
	while (left_max->_right)
	{
		left_max_parent = left_max;
		left_max = left_max->_right;
	}
	// 交换这个节点和要删除节点的 key
	std::swap(del->_key, left_max->_key);

	// 将删除 del 转化为删除 left_max (托孤法删除)
	if (left_max_parent->_left == left_max)
		left_max_parent->_left = left_max->_left;
	else
		left_max_parent->_right = left_max->_left;
	delete left_max;
	left_max = nullptr;
}

二叉树进阶 --- 上,至此结束。

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值