吴恩达机器学习(7)K-means & PCA (1)导入库(2)导入数据(3)可视化1.2 获取样本点所属类别计算每个样本点与聚类中心的距离: 1.3 计算重心点1.4 运行kmeans,重复执行上述步骤1.5 绘制数据集聚类结果&聚类中心的移动轨迹通俗的讲,原图像每个像素点的单个通道有256种颜色可供选择,而我们要用K-means算法选16种颜色,用于图片压缩。把原始图片的每个像素看作一个数据样本,然后利用K-means算法去找分组最好的16种颜色。(1)导入库与数据(2)数据
吴恩达机器学习(3)神经网络 (1)导入库(2)导入数据(3)可视化多图可视化2 代价函数3梯度下降函数4 使用scipy优化函数(1)定义函数(2)实例化5 预测准确率(1)定义预测函数(2)实例化(3)计算预测准确率(1)导入库(2)导入数据(3)定义X、y(4)导入参数 2 定义激活函数3 构建神经网络 4 预测及准确率(1)预测函数(2)计算预测准确率