题目描述:
设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
push(x) —— 将元素 x 推入栈中。
pop() —— 删除栈顶的元素。
top() —— 获取栈顶元素。
getMin() —— 检索栈中的最小元素。
分析:题目要求常数时间内完成,那么排序的操作就不可以放在getmin当中,最直接的就是引入另外一个空间 ,当然效率也比较低:
class MinStack:
def __init__(self):
self.stack=[]
self.tmp=[]#临时空间
def push(self, val: int) -> None:
self.stack.append(val)
self.tmp.append(val)
for i in range(len(self.tmp)-1):
if self.tmp[i]<self.tmp[i+1]:
self.tmp[i],self.tmp[i+1]=self.tmp[i+1],self.tmp[i]
def pop(self) -> None:
del self.tmp[self.tmp.index(self.stack[-1])]
del self.stack[-1]#前后顺序不能调换,否则就会以更新后的self.stack[-1]删除,造成错误!!
def top(self) -> int:
return self.stack[-1]
def getMin(self) -> int:
return self.tmp[-1]
# Your MinStack object will be instantiated and called as such:
# obj = MinStack()
# obj.push(val)
# obj.pop()
# param_3 = obj.top()
# param_4 = obj.getMin()
0.0看了官方题解,可以仅使用一个空间满足,时间上快了很多!!
下面是优化后的代码:
class MinStack:
def __init__(self):
self.stack=[]#尝试仅使用一个空间 每个元素是元组 储存当前压栈对象和栈最小值
def push(self, val: int) -> None:
if not self.stack:
self.stack.append((val,val))
else:
self.stack.append((val,min(self.stack[-1][1],val)))
def pop(self) -> None:
del self.stack[-1]
def top(self) -> int:
return self.stack[-1][0]
def getMin(self) -> int:
return self.stack[-1][1]
# Your MinStack object will be instantiated and called as such:
# obj = MinStack()
# obj.push(val)
# obj.pop()
# param_3 = obj.top()
# param_4 = obj.getMin()
其实也挺容易理解,就是把最关键的两个变量,min元素和压栈元素存储起来,压栈元素与上一轮压栈后栈的最小值比较,形成结果。就是一个前后联系的过程 满足了栈先进后出 后进先出的特点,比如bcd在a底下,a作为栈顶,g是待压栈元素,只需g和abcd比较
I am 小郑 和我一起准备蓝桥杯吧 寒假卷起来 进大厂!