目录
适用场景:
朴素版的Prim算法主要是应用于最小生成树问题中稠密图的情形,解决求连通图中将所有边连通起来时需要的最短距离问题,具有一定的实际应用意义。时间复杂度为O(n^2) 。
问题描述
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
Prim算法的实现原理:
一.初始化距离为正无穷
二.n次迭代
找到集合外距离最近的点t
用t更新其他点到集合的距离 集合指的是当前连通图中所有点组成的集合
把t加入集合s st[t] = true;
实现代码C++:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 510;
const int INF = 0x3f3f3f3f;
int dist[N];//存储当前点到集合的最小距离
int g[N][N];
int n,m;
bool st[N];
int Prim(){
memset(dist,0x3f,sizeof(dist));
int res = 0;
for(int i=0;i<n;i++){
//设置t为-1 0 都可以 目的是为了使得下标不存在 使得后续的遍历能够完全遍历到所有的点
int t = -1;
//寻找不在集合s中距离集合最小的点
for(int j =1;j<=n;j++){
if(!st[j] && (t==-1 || dist[t]>dist[j]))
t = j;
}
//除了第一个点以外的点 如果到集合s的距离是无穷大的话 函数直接返回INF
if(i && dist[t]==INF) return INF;
//除了第一个点以外的点 进行累加集合中的边 第一个点参与累加没有意义
if(i) res += dist[t];
//将该点加入集合s中
st[t] = true;
//用加入该集合的点更新其他点到集合的最小距离
//注意 在这里的更新操作必须在累加集合边的后面 如果先更新此步的话 若出现自环 会使得更新的dist变小 从而影响res的值
//但如果后更新此步 dist[t]的值已经被加入了res中 不会对结果造成影响了
for(int j =1;j<=n;j++)
dist[j] = min(dist[j],g[t][j]);
}
return res;
}
int main(){
//初始化邻接矩阵
memset(g,0x3f,sizeof(g));
cin>>n>>m;
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
//有向图 需要添加两条边 取min是避免重边的影响
g[a][b] = g[b][a] = min(g[a][b],c);
}
int t = Prim();
if(t==INF) cout<<"impossible"<<endl;
else cout<<t<<endl;
return 0;
}