【例题记录】矩阵快速幂

【模板】矩阵快速幂 - 洛谷

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MOD = 1e9 + 7;
struct matrix {
	int a[105][105];
}pre,res;
int n, k;
matrix mul(matrix A, matrix B) {
	matrix temp;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			temp.a[i][j] = 0;
		}
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			for (int k = 1; k <= n; k++) {
				temp.a[i][j] += (A.a[i][k] % MOD) * (B.a[k][j] % MOD) % MOD;
				temp.a[i][j] %= MOD;
			}
		}
	}
	return temp;
}
void qpow() {
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			if (i == j) res.a[i][j] = 1;
		}
	}
	while (k) {
		if (k & 1) res = mul(res, pre);
		pre = mul(pre, pre);
		k >>= 1;
	}
}
signed main() {
	cin >> n >> k;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			cin >> pre.a[i][j];
		}
	}
	qpow();
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			if (j == 1) cout << res.a[i][j];
			else cout << " " << res.a[i][j];
		}
		cout << endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ctrl AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值