Python深度学习实践:建立端到端的自动驾驶系统
1. 背景介绍
1.1 问题的由来
自动驾驶技术是近年来人工智能领域的热点之一。随着深度学习技术的不断发展,越来越多的研究者开始尝试利用深度学习技术来构建端到端的自动驾驶系统。相较于传统的自动驾驶系统,端到端自动驾驶系统具有以下优势:
- 简化系统架构:端到端自动驾驶系统将感知、决策和控制等功能集成在一个模型中,简化了系统架构,降低了系统复杂性。
- 实时性:端到端自动驾驶系统可以实现实时感知和决策,提高驾驶的安全性。
- 数据驱动:端到端自动驾驶系统可以自动从数据中学习,无需人工进行特征工程。
1.2 研究现状
目前,端到端自动驾驶系统主要分为以下几种类型:
- 基于视觉的端到端自动驾驶系统:利用深度学习模型对图像进行识别和分析,实现道路、车辆、行人等目标的检测和跟踪。
- 基于雷达的端到端自动驾驶系统:利用深度学习模型对雷达数据进行处理,实现障碍物的检测和跟踪。