图论个人笔记


感觉最近网课落下一堆,要赶快恶补一下=>不然挂了


目录

目录

目录

握手定理

推论

强连通图:

强连通图:

特殊图

欧拉图及其应用

定理1:

推论1:

定理2:

中国邮递员问题

模数转换问题

 哈密尔顿图及其应用

定理1:

定理2:

定理3:                

 平面图及其应用

定理一(欧拉公式)

定理二

推论一

定理三

库拉图斯基定理

定理四

定理五

平面图的对偶图

四色问题

定理六

树与最小生成树

定理1:

生成树与最小生成树

定义2:

定理2:

最小生成树

克鲁斯克尔(Kruskal)算法

普利姆(Prim)算法

管梅谷算法

二叉树

总结


握手定理

有向图上所有结点的入度之和等于出度之和,并且等于边数。任意图的所有结点度数之和都等于边数的2倍。

推论

在任何无向图和有向图中,奇数度结点的个数必为偶数。

强连通图:

                G中任何一对结点之间都是相互可达的

强连通图:

                G中的边除去方向后是连通的

特殊图

欧拉图及其应用

设G是一个无孤立结点的图,通过G的每条边的简单道路(回路)称为该图的一条欧拉道路(回路),具有欧拉回路的图称为欧拉图。

规定平凡图为欧拉图,显然欧拉图必然是连通图。

因此,一条欧拉回路是经过图中每一边一次且仅一次的回路。

定理1:

                无向连通图G=<V,E>是欧拉图当且仅当G的所有结点的度数都为偶数。

推论1:

                非平凡连通图G=<V,E>含有欧拉道路当且仅当G仅有零个或者奇数度结点。

定理2:

有向连通图G含有有向欧拉道路,当且仅当除了两个结点以外,其余结点的入度等于出度,而这两个例外的结点中,一个结点的入度比出度大1,另一个结点的出度比入度大1(一个是起点,一个是终点)。

有向连通图G含有有向欧拉回路,当且仅当G中的所有结点的入度等于出度。

有向连通图G=<V,E>是欧拉图当且仅当G的所有结点的度数都为偶数。非平凡连通图G=<V,E>含有欧拉道路当且仅当G仅有零个或者奇数度结点。

中国邮递员问题

                                                                                      

 在带权连通图中找一条包括全部的且权最小的回路。即把图中某些边复制成两条边,把图构造出欧拉图,然后再找一条欧拉回路。

 复制两结点之间最短路。

模数转换问题

                                                                          

 问题转化成有8个结点的有向图。结点分别记为三位二进制数                                                                                                                                                

 哈密尔顿图及其应用

定义:设G是一个连通图,若G中存在一条包含全部结点的基本道路,则称这条道路为G的哈密尔顿道路;若G中存在一个包含全部结点的回路,则称这个回路为G的哈密尔顿回路(哈密尔顿圈);含有哈密尔顿回路的图称为哈密尔顿图

规定平凡图为哈密尔顿图。

定理1:

                设无向连通图G=<V,E>是哈密尔顿图,S是V的任意非空真子集,则:w(G-S)<=|S|;

其中w(G-S)是从G中删除S后所得到图的连通分支数,|S|表示S中元素个数。(必要条件)

定理1的逆否命题:无向连通图G=<V,E>,若存在V的某个非空子集V1使得:w(G-S)>|S|,则:G

不是哈密尔顿图。

定理2:

                设G=<V,E>是具有n个结点的简单图。如果对任意两个结点u,v属于V,均有deg(u)+geg(v)>=n-1,则G中存在哈密尔顿道路。

定理3:                

                设G=是具有n(大于等于3 个)个结点的简单图。如果对任意的两个结点u,v属于V,均有deg(u)+geg(v)>=n,则G必是哈密尔顿图。

 平面图及其应用

定义:如果能把一个无向图G的所有结点和边画在平面上,使得任何两边除公共结点外没有其他交叉点,则称G为平面图,否则称G为非平面图。

设G是一个平面图,由图中的边所包围的其内部不包含图的结点和边的区域,称为G的一个面。包围该面的诸边所围构成的回路称为这个面的边界。面r的边界的长度(边数)称为该面的次数,记为D(r)。

区域面积有限的面称为有限面,反正称为无限面。显然,平面图有且仅有一个无限面。

注:若一条边不是割边,它必是两个面的公共边;割边只能是一个面对边界。两个以边为公共边界的面称为相邻的面。在一个平面图中,所有面的次数之和等于图纸边数的二倍。

定理一(欧拉公式)

                设G=<V,E>是连通平面图,若它有n个结点、m条边和f给面,则有:n-m+f=2.

定理二

                设G是一个(n,m)简单连通平面图(m>1),则有m<=3*n-6.

其逆否命题:如果m>3*n-6,则Z不是平面图。

推论一

                任何简单连通平面图中,至少存在一个其度不超过5的结点

定理三

                  设G是一个(n,m)简单连通平面图,G中每个面至少有k条边围成(k>2),则有

                                                m<=(k/(k-2))*(n-2);

其逆否命题:如果上式不成立,则G不是平面图。

库拉图斯基定理

K5和K3,3称为库拉图斯基图。

定理四

                G是平面图<=>G中不含与K5同胚的子图,也不含与K3,3同胚的子图。

定理五

                 G是平面图<=>G中无可收缩为K5的子图,也无可收缩为K3,3的子图。

平面图的对偶图

定义:设平面图G,有n个顶点,m条边和r个面,构造G的对偶图G*=<V*,E*>如下:
(1)在G的每一个面R中任取一个点vi*;作为G*的顶点,
V*=(v i*|i=1,2……r}.
(2)对G每一条边ek,若ek在G的面Ri与Rj的公共边界上,则顶点vi*与vj*邻接,作边ek*=(vi*,vj*),且与ek,相交;
若ek为G中的桥只是面Ri的边界,则作环ek*=(vi*,vj*).E*=(ek*|k=1,2,.....m}.

四色问题

定理六

                任何连通平面图都是可以五着色的。

树与最小生成树

一个连通无回路的无向图称为无向树(树),记作T,树中度数为1的节点成为树叶(终端结点),度数大于1的结点称为分支结点(内点)。森林:一个无向图的每一个连通分支都是树。

定理1:

                一个无向图(n,m)图T,是树,当且仅当下列5条之一成立:

(1)无回路,且m=n-1;

(2)连通,且m=n-1;

(3)无回路,但增加任1新边,得到且仅得到一个回路;

(4)连通但删去任1边,图便不连通(n>=2)(最小连通);

(5)每一对结点间有唯一的一条通路(n>=2);

生成树与最小生成树

定义2:

若无向连通图G的生成子图是一棵树,则称该树是G的生成树,记为TG。生成树TG中的边称为树枝。图G中其他边称为TG的弦。所有这些弦的集合称为TG的补。

定理2:

一个连通无向图,至少有一棵生成树。

一般的,图的生成树不唯一。

最小生成树

定义:设G=(V,E)是一连通的有权图,则G的生成树TG为带权生成树,TG的树枝所带权之和称为生成树TG的权,记为w(TG)。G中具有最小权的生成树TG称为G的最小生成树。

克鲁斯克尔(Kruskal)算法

要点:在不成回路的边在选取最小者。

(1)在G在选取最小权边,置边数i=1;

(2)当i=n-1时,结束,否则转(3);

(3)设已选择边为e1,e2,e3……ei,在G中选取不同于e1,e2,e3……ei的边ei+1,使{e1,e2,e3……ei,ei+1}无回路且ei+1是满足此条件的最小权边。

(4)置i为i+1,转(2).

普利姆(Prim)算法

在保持连通且不成回路的边中选取最小者。

克鲁斯克尔(Kruskal)算法和普利姆(Prim)算法区别是是否保持连通性

管梅谷算法

在一个回路中去掉权值最大的边

二叉树

二叉树已经在数据结构学习了,会单独写一个博客。

总结

图论知识中有很多概念性的比较容易混,果然还是要多看书。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值