载入数据和理解数据

本文介绍了数据加载的基本过程,包括使用pandas库读取CSV、TXT和Excel文件,以及从MySQL数据库中获取数据。此外,还展示了如何通过数据查看函数如head(),tail(),info()和describe()来理解数据集的结构和统计特性。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

提示:这里可以添加本文要记录的大概内容:

载入数据和理解数据


提示:以下是本篇文章正文内容,下面案例可供参考

一、学习目的?

1.明确数据获取和数据理解的工作过程

2.掌握数据加载和读取(从平面文件、数据库……)的方法

3.通过观察数据的概览、数据可视化等工具,对数据进行理解

二、数据的导入

1.常见的csv,txt,excel以及数据库mysql中的文件读取

代码如下(示例):

import pandas as pd
data = pd.read_csv(r'../filename.csv')	#读取csv文件
data = pd.read_table(r'../filename.txt')	#读取txt文件
data = pd.read_excel(r'../filename.xlsx')  #读取excel文件
'''

#  获取数据库中的数据
```c
import pymysql
conn = pymysql.connect(host='localhost',user='root',passwd='12345',db='mydb')	#连接数据库,注意修改成要连的数据库信息
cur = conn.cursor()	#创建游标
cur.execute("select * from train_data limit 100")	#train_data是要读取的数据名
data = cur.fetchall()	#获取数据
cols = cur.description	#获取列名
conn.commit()	#执行
cur.close()	#关闭游标
conn.close()	#关闭数据库连接
col = []
for i in cols:
	col.append(i[0])
data = list(map(list,data))
data = pd.DataFrame(data,columns=col)

2.数据查看

代码如下(示例):在进行数据分析前呢,可以查看一下数据的总体情况,从宏观上了解数据

data.head() #显示前五行数据
data.tail() #显示末尾五行数据
data.info() #查看各字段的信息
data.shape #查看数据集有几行几列,data.shape[0]是行数,data.shape[1]是列数
data.describe() #查看数据的大体情况,均值,最值,分位数值...
data.columns.tolist()   #得到列名的list

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值