大数据之hadoop的学习第二天

目录

    一、集群配置   

二、启动集群


    一、集群配置   

 namenode和secondarynamenode不要安装在同一台服务器,后面是前面的秘书,都很消耗内存

resourcemanager也很消耗内存,不要和namenode、seconarynamenode配置在同一 台机器

 首先配置core.site.xml在hadoop内部配置

通过vim core.site.xml的命令修改,

第一个配置搞定,之后配置hdfs

之前配置的namenode的地址hadoop102:8020相当于是hadoop内部的一个通讯地址,现在想要我们在外部访问hdfs,所以要暴露一个外部接口hadoop102:9870 2NN安装在hadoop104服务器上,也给一个地址

具体的命令如下

 之后再配置yarn.site.xml,vim yarn.site.xml

 接下来配置mapreduce,

现在只在102上配置完这些了,要在103,104上也要有相同的配置

现在就会用到分发的命令,这里用到的是分发的脚本xsync

 现在hadoop集群配置完毕

二、启动集群

启动集群需要配置works

vim works

 不允许有空格

启动集群前要注意初始化,

 用jps【jps(Java Virtual Machine Process Status Tool)是JDK 1.5提供的一个显示当前所有java进程pid的命令,简单实用,非常适合在linux/unix平台上简单察看当前java进程的一些简单情况。】查看一下namenode、datanode是否在每台hadoop上启动完毕

在102上启动完毕,

 在103上查看是否启动完毕

ok103也没问题

再查看104

 

ok104也没问题

 可以打开外部的接口hadoop102:9870

  然后启动yarn,一定要记住在103上

  

好 现在103和我的集群规划一摸一样了

102也和我的集群规划一模一样了 

可以打开yarn的调度平台

集群这就启动完毕了

之后进行一下集群的测试

上传小文件和大文件  

 hdfs fs -put 路径  -put表示上传文件到hdfs,这里上传的是大文件jdk

 上传的文件数据会保存到一开始配置的core.site.xml配置文件指定的路径中

 这里有一个jdk 将这两个文件全部压缩 再解压缩就会看到jdk的解压包

之后可以看到hdfs的存储位置是如下图

每台hadoop都会有一个副本

接下来执行一个wordcount

输入如上图命令  执行jar包 将Map Reduce代码(WordCount是MapReduce分布式计算框架的demo,可以作为MapReduce入门Demo,了解其思想)捆绑到jar文件中,之后执行,输入路径是集群的根目录/wcinput  输出路径也得是集群的输出路径(运行WordCount要配置输入和输出目录,不然会报错,而且输出目录不能存在,运行时会自动创建)

 这个是任务运行的页面,历史服务器没有配置,所以需要配置历史服务器

 

下周:kafka ui部署一下

小文件存储,fastDFS,glas

分布式小文件存储

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值