【实验报错修改记录】Pytorch:TypeError: forward() missing 1 required positional argument: ‘batch‘

问题背景:该项目是基于图神经网络深度学习模型,前几个月代码跑通过没有任何问题,最近想重新训练得到新的数据,结果频频报错,以下是修改历程:

问题一:TypeError: forward() missing 1 required positional argument: 'batch'

问题原因分析

  • gnnexplainer.pygnn_explainer_alg函数中,调用self.model(x=h, edge_index=edge_index, batch=batch, **kwargs)时,batch参数未被定义。

  • gnn_explainer_alg函数的参数列表中未包含batch,导致无法从调用方接收该参数。

解决方案

        1.修改gnn_explainer_alg函数定义,添加batch参数:

def gnn_explainer_alg(self,
                      x: Tensor,
                      edge_index: Tensor,
                      ex_label: Tensor,
                      mask_features: bool = False,
                      batch: Tensor = None,  # 添加batch参数
                      **kwargs
                      ) -> Tensor:

         2.在调用self.model时使用传入的batch参数

raw_preds = self.model(x=h, edge_index=edge_index, batch=batch, **kwargs)

         3.确保forward函数调用gnn_explainer_alg时传递batch参数

edge_mask = self.gnn_explainer_alg(x, edge_index, ex_label, mask_features=mask_features, batch=batch).sigmoid()

        4. 在gnnexplainer_run函数中,确保batch被正确提取并传递给解释器

# 在main.py的gnnexplainer_run函数中:
x, edge_index, batch = graph.x, graph.edge_index.long(), graph.batch
# 调用explainer时确保batch传递到forward方法
explainer(x, edge_index, batch=batch, ...)

问题二: TypeError: forward() got an unexpected keyword argument 'num_classes'

问题原因分析

  1. 参数传递冲突
    base_explainer.pyeval_related_pred方法中,调用self.model(x=x, edge_index=edge_index, **kwargs)时,kwargs可能包含num_classes参数,但模型的forward方法未定义该参数。

  2. 模型定义限制
    模型的forward方法(如Detector类)仅接受xedge_indexbatch等参数,而num_classes是模型初始化参数,不应在前向传播时传递。

解决方案

步骤 1:修改gnnexplainer.py中的forward方法

在调用eval_related_pred时,过滤掉num_classes参数:

# 修改前(报错代码)
related_preds = self.eval_related_pred(x, edge_index, hard_edge_masks, **kwargs)

# 修改后(过滤num_classes)
filtered_kwargs = {k: v for k, v in kwargs.items() if k != 'num_classes'}
related_preds = self.eval_related_pred(x, edge_index, hard_edge_masks, batch=batch, **filtered_kwargs)

总结

通过显式传递batch参数至模型调用链的每一层,可修复因参数缺失导致的错误。此问题通常由参数在多层调用中遗漏引起,需逐层检查参数传递的完整性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值