一、报错
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)

二、报错原因
下载的数据过大,运行中断,直接报错;服务器接收到了客户的请求,但是拒绝回应。
三、解决方法
3.1 下载数据集到本地
从百度网盘链接上下载数据集到本地:
(1)链接:https://pan.baidu.com/s/1J9lUvosuGJp6bLADzPN6aQ
(2)提取码:jqxx
3.2 修改原本代码
1. 查看自己下载文件的位置,我的位置在D:\Download。

2. 修改代码:
from sklearn.datasets import fetch_lfw_people
face = fetch_lfw_people(data_home = "D:\\Download\\",download_if_missing=False,min_faces_per_person=60) #60是每个人最少提取60张
print(face.data.shape) #(1348,2914)
print(face.images.shape) #(1348, 62, 47)返回数据图片个数,每个数据特征矩阵行和列
注解1: data_home是指机器学习中用于存储数据集的目录或文件夹的路径。在机器学习任务中,通常需要加载和处理数据集,data_home可以帮助指定数据集的位置,方便对数据进行访问和处理。
注解2: download_if_missing是一个参数或选项,用于控制在数据集不存在时是否自动下载数据集。在机器学习任务中,有时需要使用特定的数据集进行训练或测试,但这些数据集可能需要从互联网上下载。download_if_missing参数可以帮助自动下载数据集,以便在需要时使用。在一些机器学习库和框架中,如scikit-learn,download_if_missing参数通常与数据集加载函数一起使用。当设置download_if_missing为True时,如果数据集不存在,则会自动下载数据集并存储在指定的data_home目录中。
文章讲述了在使用sklearn.datasets.fetch_lfw_people时遇到的大数据报错问题,提供了将数据集下载到本地并修改代码指定data_home路径以及使用download_if_missing=False来避免下载的解决方案。
657

被折叠的 条评论
为什么被折叠?



