一直小小菜鸟
码龄3年
关注
提问 私信
  • 博客:18,662
    问答:23
    18,685
    总访问量
  • 14
    原创
  • 59,412
    排名
  • 632
    粉丝
  • 59
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2021-10-14
博客简介:

m0_62965652的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    204
    当月
    1
个人成就
  • 获得236次点赞
  • 内容获得5次评论
  • 获得223次收藏
  • 代码片获得252次分享
创作历程
  • 15篇
    2024年
  • 1篇
    2023年
成就勋章
TA的专栏
  • NLP
    12篇
  • numpy
    2篇
兴趣领域 设置
  • 人工智能
    计算机视觉人工智能深度学习自然语言处理nlp
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

RAG中文本和图片的对齐

首先,分别从文本和图片中提取特征。文本可以通过预训练的语言模型(如 Transformer、BERT、GPT)进行编码。图片则可以通过卷积神经网络(如 ResNet、Vision Transformer)进行编码。
原创
发布博客 2024.10.22 ·
751 阅读 ·
12 点赞 ·
0 评论 ·
8 收藏

langchain中RecursiveCharacterTextSplitter文档切割以及与其他分割方法的区别

文本分割
原创
发布博客 2024.10.22 ·
1026 阅读 ·
29 点赞 ·
0 评论 ·
26 收藏

Albert理解

在网上看到的非常好的文章,怕找不到转载一下:Albert理解 - 光彩照人 - 博客园 (cnblogs.com)参考文献:1909.11942 (arxiv.org)下载相关模型:GitHub - brightmart/albert_zh: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS, 海量中文预训练ALBERT模型
转载
发布博客 2024.07.04 ·
115 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

XLNet中对AE和AR方法的改进-排列语言模型(Permutation Language Modeling)

排列语言模型(Permutation Language Modeling)
转载
发布博客 2024.07.04 ·
71 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

numpy中where()

中的每个元素进行判断,如果元素值大于5,则该位置的结果为True,否则为False。注意这里返回的是坐标.也就是说,当where()只传入一个参数时,返回的是符合条件的坐标。的这种根据条件从两个数组/值中进行选择赋值的操作,在数据处理中非常常见和有用。是NumPy库中一个非常有用的函数,它根据给定条件从一个数组中筛选元素。中元素的值,用10替换了大于5的元素,其余元素保持原值。是当条件为False时,输出数组中该位置应该赋予的值。是当条件为True时,输出数组中该位置应该赋予的值。大小相同的布尔数组。
原创
发布博客 2024.06.23 ·
263 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

numpy中的布尔索引机制

具体来说,如果布尔数组的shape比原数组的shape小,NumPy会自动对布尔数组的shape进行扩展,使其与原数组的shape相匹配。扩展规则是:在布尔数组的shape前面补1,直到其shape与原数组的shape一致为止。也就是说,布尔索引就是当数组接收到一个布尔数组时,会将内部的布尔数组中的元素和自己的内部元素一一对应。,并从原数组中选取这些位置对应的元素。但在当数组大小不匹配时,NumPy有。布尔索引的工作原理是,的机制来处理这种情况。
原创
发布博客 2024.06.23 ·
334 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

全连接层中先升维再降维其中的含义:以FeedForward为例

全连接层中先升维再降维
原创
发布博客 2024.06.03 ·
709 阅读 ·
8 点赞 ·
0 评论 ·
8 收藏

关于seq2seq模型loss使用交叉熵具体是如何计算的

seq2seq模型loss使用交叉熵是如何计算的
原创
发布博客 2024.06.03 ·
433 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

nn.RNN的输入输出及其内部结构说明

原因是h_n只保留了最后一步的 hidden_state,但中间的 hidden_state 也有可能会参与计算,所以 pytorch 把中间每一步输出的 hidden_state 都放到output中(当然,只保留了 hidden_state 最后一层的输出),因此,你可以发现这个output的维度是。3.h_0(隐藏层)(h_0代表隐藏层的输入输出,在rnn网络中输入输出是格式是相同的)如果没有提供,默认为全0num_layers是RNN的层数。
原创
发布博客 2024.04.24 ·
1660 阅读 ·
36 点赞 ·
0 评论 ·
16 收藏

NLP的第一步:如何将文本变为embedding输入向量[N,T]

让我们来看一个具体的例子。
原创
发布博客 2024.04.24 ·
789 阅读 ·
5 点赞 ·
2 评论 ·
8 收藏

Optimizer优化器发展 从SGD到Adam(W)及其对比 (附Pytorch代码)

这里将讲解从最初的梯度下降一步一步完善直到AdamW并附有代码
原创
发布博客 2024.04.05 ·
3717 阅读 ·
21 点赞 ·
1 评论 ·
27 收藏

神经网络模型的保存和验证

答:

1.将训练好的神经网络模型保存为.mat文件:
save('bp_neural_network_model.mat', 'net');
这将把名为 bp_neural_network_model.mat 的文件保存在当前工作目录中,其中 net 是你训练好的神经网络模型。

2.加载保存的模型文件并使用其他值进行验证:
load('bp_neural_network_model.mat'); % 加载之前保存的模型
准备用于验证的输入数据
input_data = [your_input_data]; % 替换为你的验证数据
使用神经网络进行预测
output = net(input_data);
disp(output);

回答问题 2024.03.23

NLP基础_词嵌入word embedding模型合集(框架理解版)

在分词之后,对于文本类型的特征属性,需要进行,也就是需要。因为神经网络的本质还是数学运算。所以我们第一步是将分词转化为数字符号进行表示。基础方式如下:序号化、哑编码(One-Hot)、词袋法(BOW/TF) TF-IDF(Term frequency-inverse document frequency)主题模型LSALDA等word embedding部分:Word2VecChar2VecDoc2Vec紧接上文。
原创
发布博客 2024.03.21 ·
1422 阅读 ·
28 点赞 ·
1 评论 ·
11 收藏

nlp中将文本数字化的方法

分词后的下一步
原创
发布博客 2024.03.20 ·
1325 阅读 ·
24 点赞 ·
0 评论 ·
31 收藏

Word2vec详解(附Gensim代码)

简单讲解word2vec及其代码
原创
发布博客 2024.03.19 ·
4425 阅读 ·
22 点赞 ·
1 评论 ·
50 收藏

文本转向量过程中的矩阵变化示例

Word2Vec中的矩阵变换示例
原创
发布博客 2024.01.10 ·
545 阅读 ·
8 点赞 ·
0 评论 ·
8 收藏

NLP基础_分词_jieba学习笔记

#自定义词典:一词占一行,每行分三个部分:词语,词频(可忽略),词性(可忽略)饿了么 2 nt美团 2 nr#加载词典word_list = jieba.cut('饿了么是你值得信赖的选择', HMM=True)print("【载入词典后】: {}".format('/'.join(word_list)))【载入词典后】: 饿了么/是/你/值得/信赖/的/选择可以在程序中动态修改词典#例如分词为 徐 狰狞 时,可以做以下操作。
原创
发布博客 2023.12.22 ·
1000 阅读 ·
21 点赞 ·
0 评论 ·
19 收藏
加载更多