m0_63161039
码龄4年
求更新 关注
提问 私信
  • 博客:26,242
    26,242
    总访问量
  • 61
    原创
  • 219
    粉丝
  • 12
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
加入CSDN时间: 2021-10-19
博客简介:

m0_63161039的博客

查看详细资料
个人成就
  • 获得463次点赞
  • 内容获得1次评论
  • 获得368次收藏
  • 代码片获得340次分享
  • 博客总排名34,244名
  • 原力等级
    原力等级
    2
    原力分
    153
    本月获得
    0
创作历程
  • 56篇
    2025年
  • 5篇
    2023年
成就勋章
TA的专栏
  • pytorch
    3篇
  • 解决方法
    6篇
  • numpy与pandas与Matplotlib
    12篇
  • python基础
    29篇
  • 数据挖掘
    3篇
  • 软件体系结构与设计
    3篇
  • 高数与线代
  • 数据结构
    1篇
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

66人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 问答
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 问答

搜索 取消

vgg论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》笔记记录

感受野(Receptive Field)指的是卷积神经网络中某一层输出特征图上的一个像素点,在原始输入图像上所对应的区域大小。简单来说,就是该像素点受到原始输入图像中多大范围的信息影响。卷积核个数指的是在卷积层中使用的卷积核的数量。每个卷积核在对输入特征图进行卷积操作时,会提取出不同的特征。卷积核本质上是一个小的矩阵,矩阵中的每个元素都是可学习的参数。其尺寸通常是奇数,例如 3x3、5x5 等,这样可以保证有一个中心位置。
原创
发布博客 2025.04.28 ·
1207 阅读 ·
10 点赞 ·
0 评论 ·
28 收藏

梯度下降法求解线性回归问题

建立线性回归模型:线性回归是一种常见的机器学习方法,用于找出一个变量(自变量,这里是x)和另一个变量(因变量,这里是y)之间的线性关系。通过代码中的计算和迭代,最终确定了线性回归模型的参数(斜率theta和截距b),使得模型能够尽可能准确地描述自变量和因变量之间的关系。例如,在实际应用中,可以用房屋面积(自变量)来预测房屋价格(因变量),通过训练这个线性回归模型,得到一个可以用于预测的公式。数据拟合:生成的示例数据x和y之间存在一定的线性趋势,但由于加入了噪声,并不是完全精确的线性关系。
原创
发布博客 2025.04.08 ·
1038 阅读 ·
7 点赞 ·
0 评论 ·
30 收藏

梯度下降法

梯度下降法的本质是**“用局部信息指导全局搜索”**,适合解决复杂优化问题。它像一个盲人下山,虽然可能绕弯路,但通过不断调整方向,最终能找到相对好的解。这就是它被广泛应用于机器学习、深度学习的原因——毕竟现实中的问题往往复杂且没有现成的解,而梯度下降提供了一种高效且实用的思路。
原创
发布博客 2025.04.07 ·
1144 阅读 ·
21 点赞 ·
0 评论 ·
10 收藏

清理anaconda里的缓存

【代码】清理anaconda里的缓存。
原创
发布博客 2025.04.07 ·
213 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

误删了NVIDIA怎么解决

同理,即使不是华为电脑,也可以去尝试联系电脑官方的终端客户服务去解决。,这个一般在电脑背后有粘贴。方法:直接去官网下载。本人电脑是华为,所以。
原创
发布博客 2025.04.01 ·
217 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

miniconda创建python3.9虚拟环境配置pytorch(本文主要针对在安装过程中会踩的坑以及miniconda中的配置代码)(更改版,新增操作过程--python3.8配置)

在miniconda上运行pip install pillow==8.3.1 --force-reinstall。需要先下载CUDA(需要选对版本,可看下面的【电脑的CUDA版本】),此处不再详述。原因:DLL 加载失败可能是因为 Python 无法找到。是因为它是 PyTorch 1.9 兼容的稳定版本。如果提示依赖冲突,直接允许 Conda 解决冲突。需提前下载miniconda,下载过程不再说。如果文件缺失,重新安装 Pillow。降级 NumPy 到 1.x 版本。将该路径添加到系统环境变量。
原创
发布博客 2025.04.01 ·
949 阅读 ·
18 点赞 ·
0 评论 ·
14 收藏

遇到“为了对电脑进行保护,已经阻止此应用”怎么解决

原创
发布博客 2025.03.26 ·
524 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

windows自带截图键(shift+ win + s)失灵了怎么解决

原创
发布博客 2025.03.25 ·
491 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

Win11找不到磁盘清理?

原创
发布博客 2025.03.25 ·
334 阅读 ·
5 点赞 ·
0 评论 ·
0 收藏

matplotlib 练习题

会弹出一个窗口,展示包含三组数据分布的箱线图,x 轴表示数据集编号(1 - 3),y 轴表示数据值。弹出的窗口中展示了 sin(x) 和 cos(x) 的曲线,并且两条曲线之间的区域根据上下关系分别用蓝色和红色半透明区域填充。绘制 y = x,y = x^2 和 y = x^3 在同一坐标系中的折线图。并弹出一个窗口,包含三个子图,分别是折线图、散点图和柱状图。绘制一条简单的折线图,展示 y = x^2 的数据。并弹出一个窗口显示 y = x^2 的折线图。并弹出一个窗口显示散点图,点的颜色随机分布。
原创
发布博客 2025.03.21 ·
350 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

pandas练习题

对DataFrame的列应用自定义函数。data = {# 定义自定义函数# 应用自定义函数print("应用自定义函数后:
", df)代码解释:定义square函数,用于计算一个数的平方。:将square函数应用到Number列的每个元素,并将结果存储在新列Squared中。应用自定义函数后:0 1 11 2 42 3 93 4 16。
原创
发布博客 2025.03.21 ·
559 阅读 ·
11 点赞 ·
0 评论 ·
10 收藏

Numpy 代码练习题

导入 Numpy 库并简称为np。:使用np.array创建一个一维数组。arr[2]:通过索引访问数组的第三个元素,Numpy 数组索引从 0 开始。运行结果: 一维数组: [1 2 3 4 5] 第三个元素: 3。
原创
发布博客 2025.03.21 ·
820 阅读 ·
27 点赞 ·
0 评论 ·
29 收藏

10 道涵盖 Python 各方面知识的经典练习题

运行结果:字符统计结果: {'h': 1, 'e': 1, 'l': 3, 'o': 2,'': 1, 'w': 1, 'r': 1, 'd': 1}运行结果:排序后的列表: [11, 12, 22, 25, 34, 64, 90]质数是指在大于 1 的自然数中,除了 1 和它自身外,不能被其他自然数整除的数。运行结果:满足条件的数的列表: [15, 30, 45, 60, 75, 90]运行结果:列表中的最大数是: 78,最小数是: 12。:否则,将该字符添加到字典中,并将其值设为 1。
原创
发布博客 2025.03.21 ·
352 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

3关联规则挖掘

项集:多个物品的组合(如 {啤酒, 尿布})。频繁项集:支持度超过设定阈值的项集(支持度=包含该组合的记录数/总记录数)。X → Y(若购买X,则可能购买Y)。{啤酒} → {尿布}(置信度60%)。频繁项集:通过支持度筛选高频组合,核心是Apriori算法的剪枝策略。关联规则:通过置信度和提升度评估规则有效性,需结合业务场景解读。应用关键:合理设置阈值,避免过度依赖算法结果,需人工验证规则合理性。目标:高效挖掘数据集中的频繁项集(支持度≥阈值的物品组合)。
原创
发布博客 2025.03.21 ·
727 阅读 ·
25 点赞 ·
0 评论 ·
18 收藏

2数据预处理

不随意删除:优先考虑插补或标记,避免信息损失。不盲目平滑:保留数据的原始特征(如医学数据中的异常可能是重要信号)。不脱离业务:结合领域知识判断离群点的价值(如金融欺诈必须剔除,而医疗罕见病例需保留)。一句话总结:数据清洗是数据挖掘的“地基”,只有扎实的基础,才能搭建出可靠的分析模型。准:实体识别要精准(避免误判)。简:冗余处理要简化(减少存储和计算成本)。通:冲突解决要统一(制定全局规则)。活:工具选择要灵活(根据数据规模和复杂度选择方法)。
原创
发布博客 2025.03.21 ·
923 阅读 ·
13 点赞 ·
0 评论 ·
12 收藏

1数据挖掘概述

数据挖掘是从海量、复杂的数据中提取有价值信息、模式和知识的过程,结合统计学、机器学习、数据库等技术,旨在发现数据背后的隐藏规律。核心本质:通过算法分析数据,揭示未被发现的关联、趋势或异常。技术融合:整合统计学(如回归分析)、机器学习(如分类算法)、数据库技术(如 SQL 优化)等。数据类型:覆盖结构化(如表格数据)、半结构化(如 XML)和非结构化数据(如文本、图像)。任务类型是否需要标签目标典型工具 / 算法分类是(监督)贴标签决策树、SVM、神经网络聚类否(无监督)分群组。
原创
发布博客 2025.03.21 ·
858 阅读 ·
6 点赞 ·
0 评论 ·
18 收藏

matplotlib都能绘制什么图

双轴图(Twin Axes)用途:在同一图中显示两个不同量纲的数据序列。子图(Subplots)用途:将多个图表排列在网格中。表格(Table)用途:在图表底部或顶部添加数据表格。箭头/注释图(Annotations)用途:在图表中添加箭头、文本标注。Matplotlib几乎支持所有基础科学计算与数据可视化需求,通过组合核心API(如plotscatterbar)和扩展工具(如3D、动画),可覆盖从简单到复杂的图表类型。如需更高级的统计图表,推荐结合seaborn或plotly使用。
原创
发布博客 2025.03.21 ·
292 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

Matplotlib详解

Matplotlib 是 Python 中一个用于数据可视化的重要库,它提供了丰富的绘图功能。
原创
发布博客 2025.03.21 ·
247 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

Python基础总结(只看这一个)

函数体def关键字定义函数,后接函数名和参数列表(参数可无)。函数体是缩进代码块,return语句返回函数结果(可省略,此时返回None功能:封装可重复使用的代码块,提高代码的模块化和可维护性。print("相加结果:", result)相加结果: 8。
原创
发布博客 2025.03.21 ·
991 阅读 ·
13 点赞 ·
0 评论 ·
21 收藏

Pandas 知识精讲(只看这一个即可)

Pandas 是 Python 中用于数据处理和分析的核心库。它提供了高效的数据结构和数据操作工具,使得数据清洗、分析、转换等任务变得更加便捷。Series(一维)和DataFrame(二维),这两种结构可以方便地处理各种类型的数据。
原创
发布博客 2025.03.20 ·
547 阅读 ·
21 点赞 ·
0 评论 ·
13 收藏
加载更多