今天准备给大家推荐和导读《智能体设计指南-成为提示词高手和AI Agent设计师》这本书。
因为随着今年年后DeepSeek的火热,出了大量的趁热度,引流量的垃圾书。或者毫不客气的说有一些书的内容和质量,还不如直接问AI后给出的质量高。
那么今天为何还是给大家推荐和导图这本书,至少我们看了后整体感觉这是一本结合了作者多年经验的书,是一本作者认真书写的书,是一个结构逻辑严谨,既体现核心底层逻辑思想又有案例实践讲解的书。我并不是想说这本书有多好,而是在众多将AI提示词和AI Agent的书里面,这本书基本是将基础理论和底层逻辑和应用两者结合比较好的书。
在讲解书里面关键内容前,还是看下这本书适合哪些读者阅读。我个人理解是希望对提示词工程,AI Agent基本概念和底层逻辑,AI Agent基础开发知识想全面了解的人。当然如果你本身做技术的,有相应的一些AI知识积累,你可能举得书里面讲的内容比较浅显,但是这些内容更好是更加适合没有技术知识积累的人看。所以我一直强调,书没有完美的,包括我个人导读书往往也需要站在不同的视角来评价。
我对这本书的一些导读不准备按照各个章节详细展开。简单来总结,本书实际讲解了三个关键方面的内容。
-
提示词工程和编写技巧
-
AI Agent通用基础知识
-
AI Agent应用开发和实践
1. 提示词工程
如果大家看这本书的几个作者,包括云中江树,小七姐,李继刚基本就能够感受到这本书在提示词工程这部分内容的价值。基本上是把各个作者关于提示词工程方面的研究经验和模板等进行了总结,并在书里面进行了系统化的总结和描述。
所以如果单看提示词部分,这本书已经超过很多专门写AI提示词的书。特别是结构化提示词方法论部分,虽然这部分内容我很早也看到过相关文章描述,但是这本书关于这部分的内容整理更加完整和系统。
正如书里面说的,你写提示词的过程,实际就是你个人思维链展开的过程,你需要描述背景和场景,定义角色和任务,规定约束,详细说明工作流程,框定输出等。这本身恰好也是人工去处理和解决问题遵循的方法和步骤。通过采用Markdown语法结构化提示词,可以让AI更加统一理解你的语义。
为啥在涉及到AI Agent的时候,我可能更加会强调结构化提示词。因为简单来说,你去开发AI Agent应用的时候,往往就是你结构化提示词的进一步的可视化和流程化编排的过程。
也就是你写提示词的过程往往就是你后续AI Agent开发所需要的场景分析和需求文档内容。这将更加方便后续AI Agent的开发。
2. AI Agent基础
什么是AI Agent?我们先给出AI本身提供的比较标准化的一个关于AI智能体定义的答案,具体如下:
AI Agent(人工智能代理)是指能够感知其环境,做出自主决策并采取行动以实现特定目标的智能系统。它具有感知、思考、决策和行动的能力,能够通过与环境的交互不断学习和适应,并根据既定目标优化其行为。
AI Agent的关键特征包括:
-
自主性:能够在没有直接人类干预的情况下独立运行和决策
-
感知能力:能够通过各种传感器或数据接口感知和理解环境
-
决策能力:能够基于感知到的信息和既定目标做出合理决策
-
执行能力:能够实施决策并在环境中产生实际影响
-
学习适应:能够从经验中学习并优化其行为策略
-
目标导向:所有行为都围绕着实现特定目标进行
而在这本书给AI Agent一个简单的定义,即AI Agent是一种以大模型作为大脑的智能体系统。所以这个概念里面实际强调了两个关键点,其一底层是LLM大模型,其二是面向最终用户的IT系统。
AI Agent系统=LLM+记忆+任务规划
那么好了,现在的问题就是类似带了提问框界面的GPT是不是AI Agent?实际的答案这就是最简化的AI智能体,因为同时具备了两个特点,其一是底层采用了LLM大模型,其二是通过对话框实现了最简单的UI交互界面。
那么AI如何处理复杂问题?
对于复杂问题的处理我在前面将AI的文章也谈到,很多是通用大模型本身搞不定的,因为涉及到复杂问题的规划和分解,涉及到你的私有知识库,涉及到要访问和调用外部资源,涉及到关键知识的长周期记忆。
所以对于复杂问题,我们往往需要在理解和感知问题后,进行任务规划和拆解,然后针对不同的任务采用不同的解决措施。这个措施有可能是访问私有知识库检索,也可能是做数据映射处理,还可能是调用外部工具获取外部信息。
这里面就一定涉及到三个关键点。其一是外部插件Tools,其二是知识库,其三是长周期记忆库。而复杂任务本身又涉及到规划拆分,并按一定的规则约束串联起来,这个本身又涉及到Workflow的可视化编排。
所以在书里也讲到了AI Agent的4种设计模式,正好也是围绕上面几个关键要素展开。类似反思设计模式,其核心是让AI具备自我反思和自我多次迭代修正的能力,而对于Planning计划设计模式核心又是将复杂问题进行任务拆解并逐个执行的能力。
我在前面也看过一些AI Agent的书,感觉这本书是将AI Agent工作原理和设计模型讲的比较清晰的一本。
这也是我一直强调要学AI Agent开发,首先要了解AI Agent工作原理,了解前面谈到的记忆,知识库,工具插件,workflow等关键要素。在了解了这些后,不论你采用什么AI Agent开发工具,基本都是包括了上面几个关键要素的内容。
2. AI Agent应用开发
这部分内容我不准备详细导读,但是书里面谈到的AI Agent开发案例仍然可以借鉴和参考。这部分内容实际我更加推荐你直接看各种AI Agent开发平台的在线帮助文档。
因为平台功能更新迭代的速度太快了,类似Coze的智能体开发平台,当前实际已经支持创建AI应用功能,简单来说就是将低代码开发AI界面的能力融入到了AI智能体开发中。也进一步让提示词编写内容更加结构化输入。具体可以参考Coze最新的帮助文档。
对于AI Agent应用开发,我的理解核心仍然是构建一套设计方法和流程,或者需求工程。你可以按原来结构化提示词的思路,但是结构化提示词如何转变为AI Agent中的提示词模板,知识库,Workflow编排必须要讲清楚具体转换和映射方法。
你也可以有一套完整的Agent设计流程,那就应该清楚的说清楚如何去分析AI应用的原始需求和场景,并设计相应的AI流程场景,这个梳理清楚了才能够说最终落地到AI Agent开发平台和工具上面。
也就是AI Agent开发前期仍然需要设计,这个设计是一套系统工程,但是至少现在我们没看到任何一本书将这块内容讲的足够清晰的。
最后这本书对单智能体设计和多智能体设计都展开进行了相关的说明,特别是看过类似MetaGPT开源项目的可能了解什么是多智能体,简单来说就是让AI模拟分身为多个AI角色,然后完成角色间的自主协同和迭代,最终输出我们要的结果。类似软件开发,可以让AI同时模拟出需求,开发,测试多个角色进行持续迭代并完成输出。
但是我们按传统的工程学思想对AI进行多智能体拆分是否是一个好的智能体设计思路,我个人仍然持怀疑态度。特别是在AI大模型深度思考和推理能力的加强,我们不应该过去的去干涉AI内部的思考和处理逻辑,而应该让AI自主去做好任务的规划,分解和执行一系列操作。对于这个点,我们可以再过1到2年来看具体的演进情况究竟如何。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓