1.torchsummary
用途与使用方式:
打印出模型的结构摘要,帮助你确认模型架构是否符合预期,并且可以检查是否有误配的层导致输入输出不匹配的问题.
summary(model, input_size=(3, 224, 224)
结果如下图所示:
感受:使用简单,作用也很强。
2.PIL
用途与使用方式:
强大的图像处理库,可用于图像处理与图像分析。
1.打开图像
from PIL import Image
image = Image.open('xx.jpg')
image.show()
2.调整图像大小
from PIL import Image
image = Image.open('xx.jpg')
image_resized = img_resize((new_width,new_height))
image_resized.save('img_resized.jpg')
3.argparse
用途与使用方式:
用于编写用户友好的命令行窗口,定义命令行参数的结构
import argparse
def main():
parser = argparse.ArgumentParser(description = 'process some integers.')
# 添加位置参数
parser.add_argument('integers', metavar='N', type=int, nargs='+',
help=' an integer for the accumulator ')
# 添加可选参数
parser.add_argument('--sum', dest='accumulate', action='store_const',
const=sum, default=max,
help='sum')
args=parser.parse_args()
print(args.accumulate(args.integers))
if __name__ == "__main__":
main()

被折叠的 条评论
为什么被折叠?



