机器学习(西瓜书)要点随笔 对于给定的待分类样本,计算它属于每个类别的后验概率,然后将样本分类到后验概率最大的那个类别中。对样本进行中心化降维处理,并对协方差矩阵做特征值分解,取最大的前λ个特征值对应的特征向量。在给定观测数据的情况下,寻找一组参数,使得这组参数下观测数据出现的概率最大。同类样例在线上的投影点尽可能接近,异类样例投影点尽可能远离。试图找到一条直线,使所有样本到直线上的欧式距离之和最小;最大化异类支持向量到超平面的距离,从而用于分类;3.求导并置导数为0;
算法四基础知识总结(二) 在数组的赋值过程中,很可能会出现指向同一处引用的情况,因此要注意,这种情况也叫起别名。静态方法的话,可以进行重载,同时当静态方法传入的参数是数组时,外部的数组也会随内部的改变而改变。对于递归而言,要有一个最简单的终止条件,同时递归其实是将问题逐步简化的一个过程。静态方法通常被称为函数,会由static来进行区分。Math.sqrt()用于求平方根。
算法四基础知识总结(一) 的索引访问数组,会出现ArrayIndexOutOfBoundsException的报错。标识符可以由字母、数字、下划线及$组成,但不能以数字开头。final类的变量即常量只能被赋值一次。
Mamba论文感触(三) 同时对Δ、A、B、C做了解释:其中Δ是对输入内容的感兴趣程度,Δ越大,输入内容所占权重就越大,而A其实是受Δ的影响,从而具有了选择性,而B、C的选择性则决定了输入内容是否进入状态h及状态h是否影响输出y。此外,作者还做了一些细节的讨论,实验表明实数要比复数在离散化的数据上取得了更好的表现以及使用HIPPO理论来对Δ进行初始化。3.边界设定:在这里提到Transformer可以通过设置特定掩码来设置边界,而LTI模型这可能会泄露信息。1.可变间距:允许过滤掉感兴趣信息之间的噪声,有助于选择性复制任务;
Mamba论文感触(二) 此外,论文中提到了反向传播算法,并在反向传播的过程中运用到了重计算,最终融合选择性扫描层具有与使用 FlashAttention 优化的 Transformer 实现相同的内存需求。其中L代表的是序列长度,B表示批样数量,D表示输入的通道数,当序列长度越长,且隐状态维度较小时(N),循环计算要比卷积计算更有优势。同时呢,核心思想就是利用GPU的特性,在更高层计算隐状态,同时进行先前提到的内核融合,这样就避免了带宽限制以及并行扫描的限制。在这里,论文提出了两个应用挑战:循环的顺序性和巨大的内存占用。
代码随想录——01.20 收回之前的话,当条件变得复杂时,滑动窗口确实难了许多,而且我还有还多语法尚未掌握,但没关系,最难的还是踏出第一步,哈哈哈,做出了一道简单的滑动窗口的题,还是蛮开心的。我做的题目是Leetcode中的 ,是道典型的滑动窗口题。哈哈哈,还是得加油,对自己狠点!
代码随想录——01.18 今日习得滑动窗口 今天还是搞数组,争取晚上前开启下一篇,对于相向指针法和快慢指针法已经熟练一些了,但是,可惜的是,这并不能满足题目的要求,总是会出现超时的问题,因此,无奈看了答案,答案采用的是滑动窗口,相对来说,时间复杂度为O(nlogn),而且代码也变得更为简洁,所以当我们遇见这种连在一起的问题是,我们可以考虑滑动窗口。,也称为三元运算符(ternary operator),Integer.min();总之,实践出真知,熟能生巧,继续加油!此外,还有逻辑运算符?
代码随想录开刷——01.17 深有感触的还有,问题的正反面来看待,有时候确实需要考虑一下,因为正面可能较为复杂,还极易出错,但反过来看,便只是一行代码的问题;效率还是有些低,还是没努力,要继续加油,毕竟自己最擅长的,就是对自己狠一点,与诸君共勉,继续加油!真的是超级实用,也可称为栈思维的大显身手;虽然效率来说没有所写的搞,但真的很实用啊;
蓝桥杯——01.06 当再次重新做题时,还是有思路的,但是不多,哈哈哈。二分就是范围要界定好,对于想想指针来说,则是要处理好右侧的指针。还是一个思维全面的问题,要考虑全确实难,但一番思考下来,也是非常有收获的!今天复习了一下先前数组的二分法以及相向指针法,还是要确定二分法使用的范围,有序,不重复。