目录
7-1 字符串模式匹配(KMP)
给定一个字符串 text 和一个模式串 pattern,求 pattern 在text 中的出现次数。text 和 pattern 中的字符均为英语大写字母或小写字母。text中不同位置出现的pattern 可重叠。
输入格式:
输入共两行,分别是字符串text 和模式串pattern。
输出格式:
输出一个整数,表示 pattern 在 text 中的出现次数。
输入样例1:
zyzyzyz
zyz
输出样例1:
3
输入样例2:
AABAACAADAABAABA
AABA
输出样例2:
3
数据范围与提示:
1≤text, pattern 的长度 ≤106, text、pattern 仅包含大小写字母。
参考代码:运行环境C(gcc)
#include<stdio.h>
char t[1000001],p[1000001];
int next[1000001],con=0;
int lt,lp;
void get_next(){
int i=-1,j=0;
next[0]=-1;//这里由于一般下标从1开始但为了简便下标从零开始但赋值为-1
while(j<lp){
if(i==-1||p[j]==p[i]){
i++;
j++;
next[j]=i;//第一次next[1]=0符合公式
}
else i=next[i];
}
}
void kmp(){
int i=0,j=0;
while(i<lt){//并不是找第一次出现while条件减少主串完即可
if(j==-1||t[i]==p[j]){
i++;
j++;
}
else j=next[j];
if(j==lp)
{
con++;
}
}
}
int main(){
scanf("%s%s",t,p);
lt=strlen(t);
lp=strlen(p);//用lt和lp存数据元素长度为了调用循环中省去strlen()防止在循环中超时
get_next();
kmp();
printf("%d",con);
return 0;
}
7-2 【模板】KMP字符串匹配
给出两个字符串text和pattern,其中pattern为text的子串,求出pattern在text中所有出现的位置。
为了减少骗分的情况,接下来还要输出子串的前缀数组next。
输入格式:
第一行为一个字符串,即为text。
第二行为一个字符串,即为pattern。
输出格式:
若干行,每行包含一个整数,表示pattern在text中出现的位置。
接下来1行,包括length(pattern)个整数,表示前缀数组next[i]的值,数据间以一个空格分隔,行尾无多余空格。
输入样例:
ABABABC
ABA
输出样例:
1
3
0 0 1
样例说明:
参考代码:运行环境C(gcc)
#include<stdio.h>
#include<string.h>
char t[1000001],p[1000001];
int next[1000001];
int lt,lp;
void get_next()
{
int i=0,j=-1;
next[0]=-1;
while(i<lp)
{
if(j==-1||p[j]==p[i])
{
i++;
j++;
next[i]=j;
}
else j=next[j];
}
}
int kmp()
{
int i=0,j=0;
while(i<lt)
{
if(j==-1||t[i] == p[j])
{
i++;
j++;
}
else j=next[j];
if(j==lp)
{
printf("%d\n",i-j+1);//输出字串在主串匹配的位置
j=next[j];//下个匹配开始
}
}
}
int main()
{
int i;
scanf("%s%s",t,p);
lt=strlen(t);
lp=strlen(p);//循环中调用strlen会占用很多运行时长
get_next();
kmp();
for(i=1;i<lp; i++)
{
printf("%d ",next[i]);
}
printf("%d\n",next[i]);
return 0;
}
7-3 统计子串
编写算法,统计子串t在主串s中出现的次数。
输入格式:
首先输入一个整数T,表示测试数据的组数,然后是T组测试数据。每组测试数据在第一行中输入主串s,在第二行中输入子串t,s和t中不包含空格。
输出格式:
对于每组测试,若子串t在主串s中出现,则输出t在s中的子串位置和出现总次数,否则输出“0 0”。引号不必输出。
输入样例:
2
abbbbcdebb
bb
abcde
bb
输出样例:
2 4
0 0
参考代码:运行环境C(gcc)
#include<stdio.h>
#include<string.h>
int main()
{
int T;
scanf("%d",&T);
while(T--){
char s[100001],t[100],a[100];
scanf("%s%s",s,t);
int i,j,lt=strlen(t),con=0,flag=-1;
for(i=0;s[i]!='\0';i++){//优化的BF算法
for(j=0;j<lt;j++){
a[j]=s[i+j];
}
a[lt]='\0';
if(strcmp(a,t)==0&&flag==-1)flag=i+1;
if(strcmp(a,t)==0)con++;
}
if(flag!=-1)printf("%d %d\n",flag,con);
else printf("0 0\n");
}
return 0;
}
7-4 好中缀
作者 朱允刚
单位 吉林大学
我们称一个字符串S的子串T为好中缀,如果T是去除S中满足如下条件的两个子串p和q后剩余的字符串。
(1)p是S的前缀,q是S的后缀;
(2)p=q;
(3)p和q是满足条件(1)(2)的所有子串中的第二长者。
注意一个字符串不能称为自己的前缀或后缀。好中缀至少为空串,其长度大于等于0,不能为负数。
输入格式:
输入为一个字符串S,包含不超过100000个字母。
输出格式:
输出为一个整数,表示好中缀的长度。
输入样例1:
abcabcxxxabcabc
输出样例1:
9
输入样例2:
xacbacba
输出样例2:
8
输入样例3:
aaa
输出样例3:
1
参考代码:(C环境)
#include<stdio.h>
#include<string.h>
int main()
{
char s[100001];
scanf("%s",s+1);
int ls=strlen(s+1),next[100001],i=1,j=0;next[1]=0;
while(i<ls)
{
if(j==0||s[i]==s[j])next[++i]=++j;
else j=next[j];
}//next算法
int x=ls-2*next[next[ls]];//next[next[ls]]就是第二长子串的长度
if(x>=0)printf("%d",x);
else printf("0");
return 0;
}
7-5 病毒变种
作者 王东
单位 贵州师范学院
病毒DNA可以表示成由一些字母组成的字符串序列,且病毒的DNA序列是环状的。例如,假设病毒的DNA序列为baa,则该病毒的DNA序列有三种变种:baa,aab,aba。试编写一程序,对给定的病毒DNA序列,输出该病毒所有可能的DNA序列(假设变种不会重复)。
输入格式:
输入第一行中给出1个整数i(1≤i≤11),表示待检测的病毒DNA。 输入i行串序列,每行一个字符串,代表病毒的DNA序列,病毒的DNA序列长度不超过500。
输出格式:
依次逐行输出每个病毒DNA所有变种,各变种之间用空格分隔。
输入样例1:
1
baa
输出样例1:
baa aab aba
输入样例2:
2
abc
baac
输出样例2:
abc bca cab
baac aacb acba cbaa
参考代码:C语言(gcc)
#include <stdio.h>
#include <string.h>
int main()
{
int n;
scanf("%d",&n);
while(n--){
char s[501];
scanf("%s",s);
int ls=strlen(s),i,j;
printf("%s ",s);//环状病毒有ls种
for(i=2;i<=ls;i++){//第一种直接输出了这里是剩余的
s[ls]=s[0];//剩下几种是左移
for(j=1;j<=ls;j++){
s[j-1]=s[j];
}s[j-1]='\0';
printf("%s ",s);
}
printf("\n");
}
return 0;
}
7-6 判断对称矩阵
作者 张德荣
单位 浙大宁波理工学院
将矩阵的行列互换得到的新矩阵称为转置矩阵。
把m×n矩阵
A=⎣⎡a11a21⋅⋅⋅am1a12a22⋅⋅⋅am2⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅a1na2n⋅⋅⋅amn⎦⎤
的行列互换之后得到的矩阵,称为 A 的转置矩阵,记作 AT ,
即
AT=⎣⎡a11a12⋅⋅⋅a1na21a22⋅⋅⋅a2n⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅am1am2⋅⋅⋅amn⎦⎤
由定义可知, A 为m×n 矩阵,则 AT 为 n×m 矩阵。例如,
A=[1−20123]
,
AT=⎣⎡102−213⎦⎤.
n×n矩阵称之为 n阶方阵,
如果 n 阶方阵和它的转置相等,即 AT=A ,则称矩阵 A 为对称矩阵。
输入格式:
在第一行内给出n值(1<n<100)。
从第二行以后给出n阶矩阵所有行的元素值。
输出格式:
当输入的n阶矩阵是对称矩阵,输出“Yes”,否则输出“No”。
输入样例:
3
1 0 2
-2 1 3
4 3 2
输出样例:
No
输入样例:
3
1 -2 4
-2 1 3
4 3 2
输出样例:
Yes
参考代码:C语言(gcc)
#include<stdio.h>
int main()
{
int a[100][100],flag=0,i,j,n;
scanf("%d",&n);
for(i=0;i<n;i++){
for(j=0;j<n;j++){
scanf("%d",&a[i][j]);
}
}
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(a[i][j]!=a[j][i])
flag=1;
break;
}
}
if(flag==0)printf("Yes");
else printf("No");
return 0;
}
7-7 三元组顺序表表示的稀疏矩阵转置运算Ⅰ
作者 王东
单位 贵州师范学院
三元组顺序表表示的稀疏矩阵转置。
输入格式:
输入第1行为矩阵行数m、列数n及非零元素个数t。
按行优先顺序依次输入t行,每行3个数,分别表示非零元素的行标、列标和值。
输出格式:
输出转置后的三元组顺序表结果,每行输出非零元素的行标、列标和值,行标、列标和值之间用空格分隔,共t行。
输入样例1:
3 4 3
0 1 -5
1 0 1
2 2 2
输出样例1:
0 1 1
1 0 -5
2 2 2
参考代码(gcc)
#include<stdio.h>
typedef struct{
int i,j,e;//行下标、列下标、值
}Triple;
typedef struct{
Triple data[1000];
int li,lj,le;
}TSMatrix;
int main()
{
TSMatrix a,b;
int i,j,k=0,m,n,t;//输入的行数、列数、非零的个数
scanf("%d%d%d",&m,&n,&t);
a.li=m;a.lj=n;a.le=t;//行、列、非零元素的个数
for(i=0;i<t;i++){
scanf("%d%d%d",&a.data[i].i,&a.data[i].j,&a.data[i].e);
}
b.li=a.lj,b.lj=a.li,b.le=a.le;
for(i=0;i<a.lj;i++){
for(j=0;j<a.le;j++){
if(a.data[j].j==i){
b.data[k].i=a.data[j].j;
b.data[k].j=a.data[j].i;
b.data[k].e=a.data[j].e;
k++;
}
}
}
for(i=0;i<t;i++)
printf("%d %d %d\n",b.data[i].i,b.data[i].j,b.data[i].e);
}
7-8 三元组顺序表表示的稀疏矩阵加法
作者 王东
单位 贵州师范学院
三元组顺序表表示的稀疏矩阵加法。
输入格式:
输入第1行为两个同型矩阵的行数m、列数n,矩阵A的非零元素个数t1,矩阵B的非零元素个数t2。
按行优先顺序依次输入矩阵A三元组数据,共t1行,每行3个数,分别表示非零元素的行标、列标和值。
按行优先顺序依次输入矩阵B三元组数据,共t2行,每行3个数,分别表示非零元素的行标、列标和值。
输出格式:
输出第1行为相加后矩阵行数m、列数n及非零元素个数t。
输出t行相加后的三元组顺序表结果,每行输出非零元素的行标、列标和值,每行数据之间用空格分隔。
输入样例1:
4 4 3 4
0 1 -5
1 3 1
2 2 1
0 1 3
1 3 -1
3 0 5
3 3 7
输出样例1:
4 4 4
0 1 -2
2 2 1
3 0 5
3 3 7
参考代码:C语言(gcc)
#include<stdio.h>
typedef struct{
int i,j,e;
}Triple;
typedef struct{
Triple data[100];
int li,lj,le;
}TSMatrix;
int main()
{
TSMatrix a,b,c;
scanf("%d%d%d%d",&a.li,&a.lj,&a.le,&b.le);
b.li=a.li,b.lj=b.lj;
int i,j,t;
for(i=0;i<a.le;i++)
scanf("%d%d%d",&a.data[i].i,&a.data[i].j,&a.data[i].e);
for(i=0;i<b.le;i++)
scanf("%d%d%d",&b.data[i].i,&b.data[i].j,&b.data[i].e);
t=0,i=0,j=0;
while(i<a.le&&j<b.le)
{
if(a.data[i].i<b.data[j].i)c.data[t++]=a.data[i++];
else if(a.data[i].i>b.data[j].i)c.data[t++]=b.data[j++];
else if(a.data[i].j<b.data[j].j)c.data[t++]=a.data[i++];
else if(a.data[i].j>b.data[j].j)c.data[t++]=b.data[j++];
else{//行相等且列相等
a.data[i].e+=b.data[j].e;
if(a.data[i].e)c.data[t++]=a.data[i];//记录非零元素值
i++,j++;//查询的a,b的元素值都要往后移
}
}//剩余数据元素直接录入
for(;i<a.le;i++)
c.data[t++]=a.data[i];
for(;j<b.le;j++)
c.data[t++]=b.data[j];
printf("%d %d %d\n",a.li,a.lj,t);
for(i=0;i<t;i++)
printf("%d %d %d\n",c.data[i].i,c.data[i].j,c.data[i].e);
return 0;
}
7-9 三元组顺序表表示的稀疏矩阵转置Ⅱ
作者 王东
单位 贵州师范学院
三元组顺序表表示的稀疏矩阵转置Ⅱ。设a和b为三元组顺序表变量,分别表示矩阵M和T。要求按照a中三元组的次序进行转置,并将转置后的三元组置入b中恰当的位置。
输入格式:
输入第1行为矩阵行数m、列数n及非零元素个数t。
按行优先顺序依次输入t行,每行3个数,分别表示非零元素的行标、列标和值。
输出格式:
按置入b中的顺序输出置入的位置下标,转置后的三元组行标、列标和值,数据之间用空格分隔,共t行。
输入样例1:
3 4 3
0 1 -5
1 0 1
2 2 2
输出样例1:
1 1 0 -5
0 0 1 1
2 2 2 2
参考代码,C语言(gcc)
#include<stdio.h>
typedef struct {
int i,j,e,x;//多一个x是置入位置下标
}Triple;
typedef struct {
Triple data[101];
int li,lj,le;
}TSMatrix;
int main() {
TSMatrix a,b;
scanf("%d%d%d",&a.li,&a.lj,&a.le);
int i,j,p,q,col,t;
for(i=0;i<a.le;i++)
scanf("%d%d%d",&a.data[i].i,&a.data[i].j,&a.data[i].e);
b.li=a.lj,b.lj=a.li,b.le=a.le;//矩阵转置
if(b.le){
q=0;//q是存转置矩阵的下标
for(col=0;col<a.lj;col++)
for(p=0;p<a.le;p++)
if(a.data[p].j==col){//x是下标置入b的顺序
b.data[q].x=q;
b.data[q].i=a.data[p].j,b.data[q].j=a.data[p].i;
b.data[q].e=a.data[p].e,q++;//行列互换,值相等,下标自增1
}
}//按置入b的顺序即按行优先输出
for(i=0;i<b.le;i++){
t=a.data[i].e;
for(j=0;j<b.le;j++)
if(t==b.data[j].e)printf("%d %d %d %d\n",b.data[j].x,b.data[j].i,b.data[j].j,b.data[j].e);
}
return 0;
}
7-10 最大子矩阵和问题
作者 王东
单位 贵州师范学院
最大子矩阵和问题。给定m行n列的整数矩阵A,求矩阵A的一个子矩阵,使其元素之和最大。
输入格式:
第一行输入矩阵行数m和列数n(1≤m≤100,1≤n≤100),再依次输入m×n个整数。
输出格式:
输出第一行为最大子矩阵各元素之和,第二行为子矩阵在整个矩阵中行序号范围与列序号范围。
输入样例1:
5 6
60 3 -65 -92 32 -70
-41 14 -38 54 2 29
69 88 54 -77 -46 -49
97 -32 44 29 60 64
49 -48 -96 59 -52 25
输出样例1:
输出第一行321表示子矩阵各元素之和,输出第二行2 4 1 6表示子矩阵的行序号从2到4,列序号从1到6
321
2 4 1 6
参考代码:C语言(gcc环境)
#include<stdio.h>
int main(){
int sum[1001][1001];
int m,n,i,j,k,max=0,now,a,x1,x2,y1,y2;
scanf("%d%d",&m,&n);
for(i=1;i<=m;i++)//由于涉及序号范围以1为起点
for(j=1;j<=n;j++){
scanf("%d",&a);
sum[i][j]=sum[i-1][j]+a;//记录矩阵目前一列和
}
for(i=1;i<=m;i++)//用于控制子矩阵的下边界
for(j=1;j<=i;j++){//用于控制子矩阵的上边界
now=0;
int y=1;
for(k=1;k<=n;k++){//用于控制子矩阵的右边界
now+=sum[i][k]-sum[j-1][k];//动态规划原理参考网站1。
if(now>max){//与最大子列和原理类似
max=now;
x2=i;
y2=k;
x1=j;
y1=y;//记录每次行和列的范围
}
if(now<0){
now=0;
y=k+1;
}
}
}
printf("%d\n%d %d %d %d",max,x1,x2,y1,y2);
}