[NOIP2015 普及组] 扫雷游戏
题目背景
NOIP2015 普及组 T2
题目描述
扫雷游戏是一款十分经典的单机小游戏。在 n n n 行 m m m 列的雷区中有一些格子含有地雷(称之为地雷格),其他格子不含地雷(称之为非地雷格)。玩家翻开一个非地雷格时,该格将会出现一个数字——提示周围格子中有多少个是地雷格。游戏的目标是在不翻出任何地雷格的条件下,找出所有的非地雷格。
现在给出 n n n 行 m m m 列的雷区中的地雷分布,要求计算出每个非地雷格周围的地雷格数。
注:一个格子的周围格子包括其上、下、左、右、左上、右上、左下、右下八个方向上与之直接相邻的格子。
输入格式
第一行是用一个空格隔开的两个整数 n n n 和 m m m,分别表示雷区的行数和列数。
接下来 n n n 行,每行 m m m 个字符,描述了雷区中的地雷分布情况。字符 * \texttt{*} * 表示相应格子是地雷格,字符 ? \texttt{?} ? 表示相应格子是非地雷格。相邻字符之间无分隔符。
输出格式
输出文件包含 n n n 行,每行 m m m 个字符,描述整个雷区。用 * \texttt{*} * 表示地雷格,用周围的地雷个数表示非地雷格。相邻字符之间无分隔符。
样例 #1
样例输入 #1
3 3
*??
???
?*?
样例输出 #1
*10
221
1*1
样例 #2
样例输入 #2
2 3
?*?
*??
样例输出 #2
2*1
*21
提示
对于 100 % 100\% 100%的数据, 1 ≤ n ≤ 100 , 1 ≤ m ≤ 100 1≤n≤100, 1≤m≤100 1≤n≤100,1≤m≤100。
x=input().split(' ')
xx=[]
ls=[]
ss=int(x[0])*int(x[1])
#整个矩阵
for i in range(ss+1):
xx.append(0)
#矩阵初始化,给每行赋值为0,准备计数
for i in range(1,int(x[0])+1):
zz=input()
for j in range(1,int(x[1])+1):
if zz[j-1]=='?':
continue
elif zz[j-1]=='*':
ls.append((i-1)*int(x[1])+j)
if (i-2)*int(x[1])+j>=(i-3)*int(x[1])+1 and (i-2)*int(x[1])+j <= (i-1)*int(x[1]) and (i - 2) * int(x[1]) + j >=1 and(i - 2) * int(x[1]) + j <=ss:
xx[(i-2)*int(x[1])+j]+=1
if (i - 2) * int(x[1]) + j-1 >=(i-2)*int(x[1])+1 and (i - 2) * int(x[1]) + j-1 <= (i-1)*int(x[1]) and (i - 2) * int(x[1]) + j-1 >=1 and(i - 2) * int(x[1]) + j-1 <=ss :
xx[(i - 2) * int(x[1]) + j-1] += 1
if (i - 2) * int(x[1]) + j +1 >= (i-2)*int(x[1])+1 and (i - 2) * int(x[1]) + j + 1 <= (i-1)*int(x[1]) and (i - 2) * int(x[1]) + j+1 >=1 and(i - 2) * int(x[1]) + j+1 <=ss:
xx[(i - 2) * int(x[1]) + j +1]+=1
#上方
if (i - 1) * int(x[1]) + j -1>= (i-1)*int(x[1])+1 and (i - 1) * int(x[1]) + j -1 <= i*int(x[1]) and (i - 1) * int(x[1]) + j-1 >=1 and(i - 1) * int(x[1]) + j-1 <=ss:
xx[(i - 1) * int(x[1]) + j -1]+=1
if (i - 1) * int(x[1]) + j +1>= (i-1)*int(x[1])+1 and (i - 1) * int(x[1]) + j +1 <= i*int(x[1]) and (i - 1) * int(x[1]) + j+1 >=1 and(i - 1) * int(x[1]) + j+1 <=ss:
xx[(i - 1) * int(x[1]) + j +1]+=1
#本行
if i * int(x[1]) + j +1>= (i)*int(x[1])+1 and i * int(x[1]) + j +1 <= (i+1)*int(x[1]) and (i) * int(x[1]) + j+1 >=1 and i * int(x[1]) + j+1 <=ss:
xx[i * int(x[1]) + j +1]+=1
if i * int(x[1]) + j -1>= i*int(x[1])+1 and i * int(x[1]) + j -1 <= (i+1)*int(x[1]) and (i) * int(x[1]) + j-1 >=1 and i * int(x[1]) + j-1 <=ss:
xx[i * int(x[1]) + j -1]+=1
if i * int(x[1]) + j>= i*int(x[1])+1 and i * int(x[1]) + j<= (i+1)*int(x[1]) and (i) * int(x[1]) + j >=1 and i * int(x[1]) + j <=ss:
xx[i * int(x[1])+j] += 1
#下方
#八个方向,都进行判断是否在相同行之内,然后进行计数
for i in range(1,int(x[0])+1):
for j in range(1,int(x[1])+1):
if (i-1)*int(x[1])+j not in ls:
print(xx[(i-1)*int(x[1])+j],end='')
else:
print('*',end='')
print('')