【Python】辗转相除法(欧几里得算法)

专栏文章索引:Python

有问题可私聊:QQ:3375119339

目录

一、基本原理

二、算法步骤

三、示例代码

四、时间复杂度


辗转相除法,又称欧几里得算法,是一种用于计算两个正整数的最大公约数的算法。

一、基本原理

  1. 假设两个整数为  a 和 b(a > b),用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是 0 为止。
    注意:除以和除的区别
  2. 当余数为 0 时,当前算式中的除数就是  a和b  的最大公约数。

二、算法步骤

  1. 首先判断两个数是否为 0,如果其中一个数为 0,则最大公约数为另一个非零数。
  2. 然后用较大数  a 对较小数  b 取余,得到余数 r。
  3. 如果余数 r 为 0,则此时较小数  b 就是最大公约数。
  4. 如果余数  r 不为 0,则将较大数更新为较小数 b,将较小数更新为余数 r,重复上述步骤,直到余数为 0。

三、示例代码

def gcd(a, b):
    if a == 0:
        return b
    if b == 0:
        return a
    while b!= 0:
        a, b = b, a % b
    return a

四、时间复杂度

时间复杂度取决于两个数的大小关系以及除法运算的次数。一般来说,时间复杂度为 O(log(min(a, b),其中  a 和 b 是输入的两个整数。

辗转相除法是一种高效且常用的计算最大公约数的方法,在数学和计算机科学中有广泛的应用。


辗转相除法(欧几里德算法)是一种求解两个整数的最大公约数的方法。在Python中,我们可以使用辗转相除法来实现。根据引用中的代码,我们可以定义一个函数来实现辗转相除法,并接收两个整数作为参数,返回它们的最大公约数。 首先,定义一个函数`divisor`,该函数使用一个循环来进行辗转相除操作,直到余数为0。在每次循环中,我们将除数赋值给被除数,将余数赋值给除数。最后,返回除数作为最大公约数。 接下来,定义一个函数`judge`,该函数用于判断输入的两个整数的大小关系,并调用`divisor`函数来计算最大公约数。如果第一个整数大于第二个整数,则直接调用`divisor`函数传入这两个整数作为参数;否则,交换这两个整数的值,然后再调用`divisor`函数传入交换后的整数作为参数。 最后,我们可以在主函数中调用`judge`函数,传入需要求解最大公约数的两个整数,并将结果打印出来。 参考引用中的代码,以下是Python实现辗转相除法求解最大公约数的示例代码: ```python def divisor(n, m): while m != 0: c = n // m # 商数 d = n % m # 余数 n = m # 替换除数 m = d # 替换被除数 return n def judge(n, m): if n > m: result = divisor(n, m) else: result = divisor(m, n) return result num1 = int(input("请输入一个整数: ")) num2 = int(input("请输入一个整数: ")) gcd = judge(num1, num2) print("这两个整数的最大公约数为:", gcd) ``` 这段代码中,我们首先定义了`divisor`函数来实现辗转相除法。然后,定义了`judge`函数来判断输入整数的大小关系,并调用`divisor`函数来获取最大公约数。最后,在主函数中接收用户输入的两个整数,并调用`judge`函数来计算它们的最大公约数,并将结果打印出来。 通过运行以上代码,您可以得到两个整数的最大公约数。在这个例子中,输入100和18,得到的最大公约数是2,与引用中的结果一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老小孩-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值