牛客小白月赛C-School

本文介绍了一种处理区间查询问题的有效方法,通过区间排序、合并及二分查找,实现O(qlogn)的时间复杂度,适用于解决特定场景下的大量区间查询问题。
摘要由CSDN通过智能技术生成

题目描述

D 国的时间制度很奇怪,一天有 h 小时,一小时有m 分。

位于 D 国的 E 校给学生发放了校卡。
这种校卡具有通话功能,但是在某些时间段,校卡是不能通话的。
共有 n 个不能通话时间段,第 iii 段从 ai​ 时 bi 分到 ci 时 dii​分不可通话(包含)。
同时,会有 q 组询问,每次询问包含两个整数 x,y询问的是 x 时 y 分是否可以打电话。如果可以则输出 Yes,否则输出 No。

输入描述:

第一行四个整数 n,h,m,q,。
接下来n 行,每行四个整数 a,b,c,d,意义如题述。
接下来q行,每行两个整数 x,y,表示询问 x 时 y 分是否可以打电话。

输出描述:

共 q 行,对于每一个询问,输出 Yes 或 No,每行一个。

思路:

有n个区间,q个询问,询问x是否在区间之中。先将区间排序,合并,然后二分查找x

复杂度O(qlogn)

代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int N=2e5+10,mod=1e7+7;
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    ll n,h,m,q;
    cin>>n>>h>>m>>q;
    vector<PII> vt;
    for(int i=1;i<=n;i++){
      ll a,b,c,d;
        cin>>a>>b>>c>>d;
        a=a*m+b;
        c=c*m+d;
        vt.push_back({a,c});
    }
    sort(vt.begin(),vt.end());       //按第一个关键字升序排序
    vector<PII> sec;                 //存储合并后的区间
    sec.push_back(vt[0]);            //区间合并
    for(int i=1;i<vt.size();i++)
    {
        if(vt[i].first<=sec.back().second)
        {
            sec.back().second=max(sec.back().second,vt[i].second);
        }
        else sec.push_back(vt[i]);
    }
    while(q--)
    {
        ll x,y;
        cin>>x>>y;
        x=x*m+y;
        int l=-1,r=sec.size();
        int f=1;    
        while(l+1<r)
        {
            int mid=(l+r)/2;
            if(x<=sec[mid].second&&x>=sec[mid].first)
            {
                cout<<"No\n";
                f=0;
                break;
            }
            else if(x>sec[mid].second) l=mid;
            else r=mid;
        }
        if(f) cout<<"Yes\n";
    }
    return 0;
}

tip:   vector.back()可表示数组最后一个数

总结:

处理区间查询问题

排序,合并,二分查询

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值