💡💡💡本文改进内容: CVPR2023 动态稀疏注意力的双层路由方法BiLevelRoutingAttention,强烈推荐,涨点很不错,同时被各个领域的魔改次数甚多,侧面验证了性能。
💡💡💡BiLevelRoutingAttention对小目标检测效果比较好:BRA模块是基于稀疏采样而不是下采样,一来可以保留细粒度的细节信息,二来同样可以达到节省计算量的目的。
改进结构图如下:

YOLOv9魔术师专栏
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁
本文介绍了YOLOv9框架,并探讨了BiLevelRoutingAttention,一种动态稀疏注意力的双层路由方法,特别适合小目标检测。通过对YOLOv9的改进,结合BiLevelRoutingAttention,可以在保留细节信息的同时减少计算量。作者提供了代码实现和详细步骤,帮助读者理解并实践网络魔改。
订阅专栏 解锁全文
2228

被折叠的 条评论
为什么被折叠?



