YOLOv9改进策略:注意力机制 | 动态稀疏注意力的双层路由方法BiLevelRoutingAttention | CVPR2023

本文介绍了YOLOv9框架,并探讨了BiLevelRoutingAttention,一种动态稀疏注意力的双层路由方法,特别适合小目标检测。通过对YOLOv9的改进,结合BiLevelRoutingAttention,可以在保留细节信息的同时减少计算量。作者提供了代码实现和详细步骤,帮助读者理解并实践网络魔改。

  💡💡💡本文改进内容: CVPR2023 动态稀疏注意力的双层路由方法BiLevelRoutingAttention,强烈推荐,涨点很不错,同时被各个领域的魔改次数甚多,侧面验证了性能。

  💡💡💡BiLevelRoutingAttention对小目标检测效果比较好:BRA模块是基于稀疏采样而不是下采样,一来可以保留细粒度的细节信息,二来同样可以达到节省计算量的目的。​​​​​​

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值