机器学习—神经网络笔记 神经网络(Neural Networks)是机器学习中一类强大的模型,它们受到人脑神经元网络的启发。神经网络通常由多个层(Layers)组成,每个层包含多个神经元(Neurons),这些神经元通过连接权重(Weights)相互连接。神经网络通过学习数据之间的复杂关系来执行任务,例如分类、回归、聚类等。
lingo的使用:线性整数规划及敏感性分析 本文主要介绍了如何使用lingo求解线性整数规划,和进行敏感性分析(即参数价值(对偶价值)和资源向量(右端向量)),这是通过对线性规划模型的系数和约束条件进行扰动来进行灵敏度分析的重要概念。
Datawhale吃瓜教程Task01西瓜书-机器学习理论 假设空间由样本特征所有可能假设组成。关于《西瓜书》的第一章绪论,通过挑选西瓜的例子,主要介绍了后续章节会用到的基本概念,,如数据集、样本、属性/特征、算法、泛化等,假设空间、归纳偏好(这让我想到了特征选择和模糊数学)。这一章还介绍了人工智能的发展历程,包括20世纪50年代到70年代的推理期和知识期,以及20世纪80年代至今的符号主义学习、连接主义学习等发展阶段。随着互联网和计算机的发展,机器学习越来越多地渗透到我们的生活中,对于我们的生活、工作和社交都产生了深远的影响,甚至对一些产业的发展方向产生了影响。
信息论中自信息量与平均信息量的计算及其最大信息量与概率的关系 信息论是运用与的信息、等问题的。信息系统就是广义的通信系统,泛指某种信息从一处传送到另一处所需的全部设备所构成的系统。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。和是信息论研究中的两大领域。这两个方面又由、信源-信道隔离定理相互联系。在本篇文章里主要解决的是自信息量和离散信源平均信息量的计算及讨论二元离散信源的最大信息量与概率的关系。