算法日记(五)之串的模式匹配(一)

本文探讨了《数据结构与算法》中的核心概念——字符串(串)及其模式匹配。重点介绍了暴力搜索(BF)算法的原理、步骤和C/C++实现,同时预告了更高效的KMP算法。通过实例展示了BF算法的工作过程,并鼓励读者实践。
摘要由CSDN通过智能技术生成

在学习《数据结构与算法》这本书,主要知识点是几种常见的数据类型如线性表,树和图等。但也有几种数据结构是我们不容忽视的,如栈,队列,串和广义表等等。今天难得有空就来分享一下串的基础知识,其实串(实质指字符串)在我们日常中应用很广泛,我们都相对很熟悉。串对应也有一种容器string,在前面的c++常见几种容器中讲过。今天主要来分享一下串的考试重难点——模式匹配,包括BF算法和KMP算法。下面一种一种来看看吧

 

1.BF算法(暴力算法,简单但效率低):

BF算法思路直观简洁,但当匹配失败时,主串的指针 i 总是回溯到 i-j+2 位置,模拟串的指针总是恢复到首字符位置 j=1 ,所以其时间复杂度高。

步骤:

(1)分别利用计数指针 i 和 j 指示主串 S 和模式 T 中当前正待比较的字符位置,i 初值为 pos ,j 初值为 1
(2)如果两个串均未比较到串尾,即 i 和 j 均分别小于等于 S 和 T 的长度时,则循环执行如下操作:

S.ch[i] 和 T.ch[j] 比较,若相等,则 i 和 j 分别指示串中下个位置,继续比较后续字符。若不等,指针后退重新开始匹配,从主串的下一个字符( i = i - j + 2 )起再重新和模式的第一个字符( j = 1 )比较。
(3)如果 j > T.length ,说明模式 T 中的每个字符依次和主串 S 中的一个连续的字符序列相等,则匹配成功,返回和模式 T 中第一个字符相等的字符相等的字符在主串 S 中的序号( i - T.length );否则称匹配不成功,返回 0。

实现代码(简单C语言版):

#include <stdio.h>
#include<string.h>
//strA是主串,strB是子串
int mate(const char* strA, const char* strB)//注意要在char*前面加上const,博主踩过的坑

{
    int i, j;
    i = j = 0;
    while (i < strlen(strA) && j < strlen(strB)) {
        if (strA[i] == strB[j]) {
            i++;
            j++;
        }
        else {
            i = i - j + 1;
            j = 0;
        }
    }
    //判断字串情况如果到最后则遍历完毕找到匹配位置
    if (j == strlen(strB)) {
        return i - j + 1;
    }
    return 0;
}

int main() {
    int num = mate("sadjijasidhhGoogle", "Google");
    printf("%d", num);
    return 0;
}

程序执行图:

扩展(c++版):
#include<string>
#include<iostream>
using namespace std;
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status;
#define MAXSTRLEN 255//用户可在255以内定义最长串长
typedef char SString[MAXSTRLEN + 1];
Status StrAssign(SString T, const char* chars)//0号单元存放串的长度
{
    int i;
    if (strlen(chars) > MAXSTRLEN)
        return ERROR;
    else {
        T[0] = strlen(chars);
        for (i = 1; i < T[0]; i++)
        {
            T[i] = *(chars + i - 1);
        }
        return OK;
    }
}
//BF算法
int Index(SString S, SString T, int pos)
{
    //返回模式T在主串S中第pos个字符之后第s一次出现的位置,若不存在,则返回值为0
    //其中,T非空,1<=pos<=StrLength(S)
    int i=pos;
    int j = 1;
    while (i <= S[0] && j <= T[0])
    {
        if (S[i] == T[j])
        {
            ++i;
            ++j;
        }//继续比较后继字符串
        else
        {
            i = i - j + 2;//i=i-(j-1)+1
            j = 1;
        }//指针后退重新开始匹配
    }
    if (j > T[0])
    {
        return i - T[0];
    }
    else return 0;
    return 0;
}
int main()
{
    SString S, T;
    StrAssign(S, "ababcacbcacbab");
    StrAssign(T, "abcac");
    cout << "主串和子串在第" << Index(S, T, 1) << "个字符处首次匹配\n";
    system("pause");
    return 0;
}

好啦,有关串的模式匹配之BF算法的内容就分享到这啦,大家可以上机去体验一下啦,下期文章再分享另一种串模式匹配算法——KMP算法(超复杂,超难的哦)。

本贴为博主亲手整理。如有错误,请评论区指出,一起进步。谢谢大家的浏览.


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值