前面讲到了线索二叉树的基础知识后,今天我们紧随其后来说说另一种特殊二叉树---哈夫曼树.这几种特殊二叉树可能理解起来有点难度,没关系,我只能说慢慢理解,隔一段时间拿出来理解理解,说不定自己随着学的东西越来越多,理解起来就会越来越容易.好啦,直入正题,给大家分享一下哈夫曼树的基础知识吧
1.学习哈夫曼树必懂的几个术语:
在一棵树中,从一个结点往下可以达到的结点之间的通路,称为路径。
某一路径所经过的“边”的数量,称为该路径的路径长度
若将树中结点赋给一个带有某种含义的数值,则该数值称为该结点的权。
从根结点到该结点之间的路径长度与该结点的权的乘积,称为该结点的带权路径长度。
一棵树的带权路径长度等于所有结点的带权路径长度。
划重点:根据树的带权路径长度的计算规则,我们应该尽可能地让权值大的叶子结点靠近根结点,让权值小的叶子结点远离根结点,这样便能使得这棵二叉树的带权路径长度达到最小。
2.创建二叉树的思路:构建哈夫曼树就是反复选择两个最小的元素进行合并,直到只剩下一个元素为止。
1、初始状态下共有n个结点,结点的权值分别是给定的n个数,将他们视作n棵只有根结点的树。
2、合并其中根结点权值最小的两棵树,生成这两棵树的父结点,权值为这两个根结点的权值之和,这样树的数量就减少了一个。
3、重复操作2,直到只剩下一棵树为止,这棵树就是哈夫曼树。
3.哈夫曼树的单个结点类型:
typedef double DataType; //结点权值的数据类型
typedef struct HTNode //单个结点的信息
{
DataType weight; //权值
int parent; //父节点
int lc, rc; //左右孩子
}*HuffmanTree;
4.创建的过程就让几张图来说明吧


最终 ,这样一棵哈夫曼树就创建成功了,(注意我们经常把哈夫曼树的数据放在一个数组中)

创建的代码部分;
/在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
void Select(HuffmanTree& HT, int n, int& s1, int& s2)
{
int min;
//找第一个最小值
for (int i = 1; i <= n; i++)
{
if (HT[i].parent == 0)
{
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++)
{
if (HT[i].parent == 0 && HT[i].weight < HT[min].weight)
min = i;
}
s1 = min; //第一个最小值给s1
//找第二个最小值
for (int i = 1; i <= n; i++)
{
if (HT[i].parent == 0 && i != s1)
{
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++)
{
if (HT[i].parent == 0 && HT[i].weight < HT[min].weight&&i != s1)
min = i;
}
s2 = min; //第二个最小值给s2
}
//构建哈夫曼树
void CreateHuff(HuffmanTree& HT, DataType* w, int n)
{
int m = 2 * n - 1; //哈夫曼树总结点数
HT = (HuffmanTree)calloc(m + 1, sizeof(HTNode)); //开m+1个HTNode,因为下标为0的HTNode不存储数据
for (int i = 1; i <= n; i++)
{
HT[i].weight = w[i - 1]; //赋权值给n个叶子结点
}
for (int i = n + 1; i <= m; i++) //构建哈夫曼树
{
//选择权值最小的s1和s2,生成它们的父结点
int s1, s2;
Select(HT, i - 1, s1, s2); //在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
HT[i].weight = HT[s1].weight + HT[s2].weight; //i的权重是s1和s2的权重之和
HT[s1].parent = i; //s1的父亲是i
HT[s2].parent = i; //s2的父亲是i
HT[i].lc = s1; //左孩子是s1
HT[i].rc = s2; //右孩子是s2
}
//打印哈夫曼树中各结点之间的关系
printf("哈夫曼树为:>\n");
printf("下标 权值 父结点 左孩子 右孩子\n");
printf("0 \n");
for (int i = 1; i <= m; i++)
{
printf("%-4d %-6.2lf %-6d %-6d %-6d\n", i, HT[i].weight, HT[i].parent, HT[i].lc, HT[i].rc);
}
printf("\n");
}
5,最后引入一个概念:哈夫曼编码,哈夫曼编码是由哈夫曼树变化而来的.
对于任意一棵二叉树来说,把二叉树上的所有分支都进行编号,将所有左分支都标记为0,所有右分支都标记为1。对于哈夫曼树上的叶子结点,根据从根结点到该叶子结点的路径所确定的一个编号,就是该叶子结点的哈夫曼编码。
如图就是哈夫曼编码:

下面是从创建哈夫曼树到哈夫曼树编码的代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef double DataType; //结点权值的数据类型
typedef struct HTNode //单个结点的信息
{
DataType weight; //权值
int parent; //父节点
int lc, rc; //左右孩子
}*HuffmanTree;
typedef char** HuffmanCode; //字符指针数组中存储的元素类型
//在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
void Select(HuffmanTree& HT, int n, int& s1, int& s2)
{
int min=0;
//找第一个最小值
for (int i = 1; i <= n; i++)
{
if (HT[i].parent == 0)
{
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++)
{
if (HT[i].parent == 0 && HT[i].weight < HT[min].weight)
min = i;
}
s1 = min; //第一个最小值给s1
//找第二个最小值
for (int i = 1; i <= n; i++)
{
if (HT[i].parent == 0 && i != s1)
{
min = i;
break;
}
}
for (int i = min + 1; i <= n; i++)
{
if (HT[i].parent == 0 && HT[i].weight < HT[min].weight && i != s1)
min = i;
}
s2 = min; //第二个最小值给s2
}
//构建哈夫曼树
void CreateHuff(HuffmanTree& HT, DataType* w, int n)
{
int m = 2 * n - 1; //哈夫曼树总结点数
HT = (HuffmanTree)calloc(m + 1, sizeof(HTNode)); //开m+1个HTNode,因为下标为0的HTNode不存储数据
for (int i = 1; i <= n; i++)
{
HT[i].weight = w[i - 1]; //赋权值给n个叶子结点
}
for (int i = n + 1; i <= m; i++) //构建哈夫曼树
{
//选择权值最小的s1和s2,生成它们的父结点
int s1, s2;
Select(HT, i - 1, s1, s2); //在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
HT[i].weight = HT[s1].weight + HT[s2].weight; //i的权重是s1和s2的权重之和
HT[s1].parent = i; //s1的父亲是i
HT[s2].parent = i; //s2的父亲是i
HT[i].lc = s1; //左孩子是s1
HT[i].rc = s2; //右孩子是s2
}
//打印哈夫曼树中各结点之间的关系
printf("哈夫曼树为:>\n");
printf("下标 权值 父结点 左孩子 右孩子\n");
printf("0 \n");
for (int i = 1; i <= m; i++)
{
printf("%-4d %-6.2lf %-6d %-6d %-6d\n", i, HT[i].weight, HT[i].parent, HT[i].lc, HT[i].rc);
}
printf("\n");
}
//生成哈夫曼编码
void HuffCoding(HuffmanTree& HT, HuffmanCode& HC, int n)
{
HC = (HuffmanCode)malloc(sizeof(char*) * (n + 1)); //开n+1个空间,因为下标为0的空间不用
char* code = (char*)malloc(sizeof(char) * n); //辅助空间,编码最长为n(最长时,前n-1个用于存储数据,最后1个用于存放'\0')
code[n - 1] = '\0'; //辅助空间最后一个位置为'\0'
for (int i = 1; i <= n; i++)
{
int start = n - 1; //每次生成数据的哈夫曼编码之前,先将start指针指向'\0'
int c = i; //正在进行的第i个数据的编码
int p = HT[c].parent; //找到该数据的父结点
while (p) //直到父结点为0,即父结点为根结点时,停止
{
if (HT[p].lc == c) //如果该结点是其父结点的左孩子,则编码为0,否则为1
code[--start] = '0';
else
code[--start] = '1';
c = p; //继续往上进行编码
p = HT[c].parent; //c的父结点
}
HC[i] = (char*)malloc(sizeof(char) * (n - start)); //开辟用于存储编码的内存空间
strcpy_s(HC[i],10,&code[start]); //将编码拷贝到字符指针数组中的相应位置
}
free(code); //释放辅助空间
}
//主函数
int main()
{
int n = 0;
printf("请输入数据个数:>");
scanf_s("%d", &n);
DataType* w = (DataType*)malloc(sizeof(DataType) * n);
if (w == NULL)
{
printf("malloc fail\n");
exit(-1);
}
printf("请输入数据:>");
for (int i = 0; i < n; i++)
{
scanf_s("%lf", &w[i]);
}
HuffmanTree HT;
CreateHuff(HT, w, n); //构建哈夫曼树
HuffmanCode HC;
HuffCoding(HT, HC, n); //构建哈夫曼编码
for (int i = 1; i <= n; i++) //打印哈夫曼编码
{
printf("数据%.2lf的编码为:%s\n", HT[i].weight, HC[i]);
}
free(w);
return 0;
}
代码有点复杂难理解,大家慢慢理解吧。
本贴为博主亲手整理。如有错误,请评论区指出,一起进步。谢谢大家的浏览.
本文介绍了哈夫曼树的基本概念,包括路径、路径长度、权值、带权路径长度等,并详细阐述了如何构建哈夫曼树,通过不断合并最小权值的结点。同时,解释了哈夫曼编码的生成过程,即从哈夫曼树中为每个叶子结点生成0和1组成的编码。最后,提供了一段C语言代码示例,展示了从构建哈夫曼树到生成哈夫曼编码的完整流程。
1414

被折叠的 条评论
为什么被折叠?



