前面已经分享完了图的应用的三种。这三种可以说是很重要的,涉及了几个重要算法。今天,我们来分享《数据结构与算法》书本里的图的第四种应用——关键路径。下面我们一起来看看吧
1.AOE网
在前一期关于拓扑排序的文章中,我们讲到了AOV网,而今天关键路径这个主题则是关系到AOE网。AOE网(Activity On Edge)即边表示活动的网,是与AOV网(顶点表示活动)相对应的一个概念。而拓扑排序恰恰就是在AOV网上进行的,这是拓扑排序与关键路径最直观的联系。AOE网是一个带权的有向无环图,其中顶点表示事件(Event),弧表示活动,权表示活动持续的时间。
2.关键路径
先来个小故事理解一下:唐僧师徒从长安出发去西天取经,佛祖规定只有四人一起到达西天方能取得真经。假如师徒四人分别从长安出发,走不同的路去西天:孙悟空一个筋斗云十万八千里,一盏茶的功夫就到了;八戒和沙和尚稍慢点也就一天左右的时间;而唐僧最慢需要14年左右。徒弟到达后是要等着师傅的。那么用时最长的唐僧所走的路,就是取经任务中的关键路径。其他人走的路径属于非关键路径。
由于AOE网中的有些活动是可以并行进行的(如活动a1 、a2 和a3 就是可以并行进行的),所以完成工程的最短时间是从源点到汇点的最长路径的长度。路径长度最长的路径就叫做 关键路径(Critical Path)。

重点注意下面的几个公式
下图中的l-e等于0的点就是关键路径上的点。

下面是关于关键路径的几个需要注意的问题
下面是关于这个关键路径的算法:
#include <stdio.h>
#include <stdlib.h>
#define MaxVerNum 20
int visited[MaxVerNum];
typedef char VertexType;
typedef struct ArcNode
{
int adjvex; //该弧指向的顶点位置
struct ArcNode* nextarc; //指向下一个表结点
int info; //权值信息
}ArcNode; //边结点类型
typedef struct VNode
{
VertexType data;
int indegree;
ArcNode* firstarc;
}VNode, Adjlist[MaxVerNum];
typedef struct
{
Adjlist vertices; //邻接表
int vernum, arcnum; //顶点数和弧数
}ALGraph;
//查找符合的数据在数组中的下标
int LocateVer(ALGraph G, char u)
{
int i;
for (i = 0; i < G.vernum; i++)
{
if (u == G.vertices[i].data)
return i;
}
if (i == G.vernum)
{
printf("Error u!\n");
exit(1);
}
return 0;
}
//常见图的邻接矩阵
void CreateALGraph(ALGraph& G)
{
int i, j, k, w;
char v1, v2;
ArcNode* p;
printf("输入顶点数和弧数: ");
scanf_s("%d %d", &G.vernum, &G.arcnum);
printf("请输入顶点!\n");
for (i = 0; i < G.vernum; i++)
{
printf("请输入第 %d 个顶点: \n", i);
fflush(stdin);//清空输入缓冲区
scanf_s("%c", &G.vertices[i].data);
G.vertices[i].firstarc = NULL;
G.vertices[i].indegree = 0;
}
for (k = 0; k < G.arcnum; k++)
{
printf("请输入弧的顶点和相应权值(v1, v2, w): \n");
//清空输入缓冲区
fflush(stdin);
scanf_s("%c %c %d", &v1, &v2, &w);
i = LocateVer(G, v1);
j = LocateVer(G, v2);
p = (ArcNode*)malloc(sizeof(ArcNode));
p->adjvex = j;
p->info = w;
p->nextarc = G.vertices[i].firstarc;
G.vertices[i].firstarc = p;
G.vertices[j].indegree++; //vi->vj, vj入度加1
}
return;
}
//求图的关键路径函数
void CriticalPath(ALGraph G)
{
int i, k, e, l;
int* Ve, * Vl;
ArcNode* p;
//*****************************************
//以下是求时间最早发生时间
//*****************************************
Ve = new int[G.vernum];
Vl = new int[G.vernum];
for (i = 0; i < G.vernum; i++) //前推
Ve[i] = 0;
for (i = 0; i < G.vernum; i++)
{
ArcNode* p = G.vertices[i].firstarc;
while (p != NULL)
{
k = p->adjvex;
if (Ve[i] + p->info > Ve[k])
Ve[k] = Ve[i] + p->info;
p = p->nextarc;
}
}
//*****************************************
//以下是求最迟发生时间
//*****************************************
for (i = 0; i < G.vernum; i++)
Vl[i] = Ve[G.vernum - 1];
for (i = G.vernum - 2; i >= 0; i--) //后推
{
p = G.vertices[i].firstarc;
while (p != NULL)
{
k = p->adjvex;
if (Vl[k] - p->info < Vl[i])
Vl[i] = Vl[k] - p->info;
p = p->nextarc;
}
}
//******************************************
for (i = 0; i < G.vernum; i++)
{
p = G.vertices[i].firstarc;
while (p != NULL)
{
k = p->adjvex;
e = Ve[i]; //最早开始时间为时间vi的最早发生时间
l = Vl[k] - p->info; //最迟开始时间
char tag = (e == l) ? '*' : ' '; //关键活动
printf("(%c, %c), e = %2d, l = %2d, %c\n", G.vertices[i].data, G.vertices[k].data, e, l, tag);
p = p->nextarc;
}
}
delete[] Ve;
delete[] Vl;
}
void main()
{
ALGraph G;
printf("以下是查找图的关键路径的程序。\n");
CreateALGraph(G);
CriticalPath(G);
}
如果有不理解的大家就多看几遍吧。好啦,关于这个图的应用——关键路径就分享到这啦,至此,关于图的内容就分享到这啦,若有知识补充的话,博主也专门做一期文章来补充。
本贴为博主亲手整理。如有错误,请评论区指出,一起进步。谢谢大家的浏览.
3581

被折叠的 条评论
为什么被折叠?



