7-64 哈夫曼树 (25 分)

哈夫曼树,第一行输入一个数n,表示叶结点的个数。

需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出哈夫曼树的带权路径长度(WPL)。

输入格式:

第一行输入一个数n,第二行输入n个叶结点(叶结点权值不超过1000,2<=n<=1000)。

输出格式:

在一行中输出WPL值。

输入样例:

5
1 2 2 5 9

输出样例:

37
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#define MINDATA -1
typedef struct HNode* Heap;
typedef Heap MinHeap;
struct HNode {
	int* Data;
	int Size;
};
MinHeap CreateHeap(int MaxSize) {
	MinHeap H = (MinHeap)malloc(sizeof(struct HNode));
	H->Data = (int*)malloc((MaxSize + 1) * sizeof(int));
	H->Size = 0;
	H->Data[0] = MINDATA;
	return H;
}
void Insert(MinHeap H, int X) {
	int i;
	i = ++H->Size;
	for (; H->Data[i / 2] > X; i /= 2)
		H->Data[i] = H->Data[i / 2];
	H->Data[i] = X;
}
int DeleatMin(MinHeap H) {
	int Parent, Child;
	int MinItem, X;
	MinItem = H->Data[1];
	X = H->Data[H->Size--];
	for (Parent = 1; Parent * 2 <= H->Size; Parent = Child){
		Child = Parent * 2;
		if ((Child != H->Size) && (H->Data[Child]>H->Data[Child+1]))
			Child++;
		if (X <= H->Data[Child])break;
		else
			H->Data[Parent] = H->Data[Child];
	}
	H->Data[Parent] = X;
	return MinItem;
}
int main() {
	int n, x, a, b, sum = 0;
	scanf("%d", &n);
	Heap H = CreateHeap(n);
	for (int i = 0; i < n; i++) {
		scanf("%d", &x);
		Insert(H, x);
	}
	while (H->Size != 1) {
		a = DeleatMin(H);
		b = DeleatMin(H);
		b = a + b;
		sum += b;
		Insert(H, b);
	}
	printf("%d", sum);
	system("pause");
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值