组会 | Transformer 中有意思的部分


⚠️ 本博客只记录了 Transformer 中有意思的部分



1 层归一化

在这里插入图片描述

  • Transformer 中的 “Norm” 指的是层归一化操作,它作用在当前层的输出上,以标准化下一层的输入,从而加速和稳定模型的训练过程。
  • 由于不同样本的长度可能不同,因此 Transformer 使用的是层归一化,而不是批量归一化。

批量归一化和层归一化:

  • 维度 N 表示样本个数,维度 C 表示通道个数,维度 T 表示特征个数
  • 批量归一化:对不同样本的同一通道做归一化(对应于 (a) 中蓝色部分)
  • 层归一化:对同一样本的不同通道做归一化(对应于 (b) 中蓝色部分)

在这里插入图片描述

个人理解:在 NLP 中,一句话为一个样本,句中的一个单词为一个特征,词向量的维度等于通道个数。

当样本长度不同时:

  • 如下图所示,当 T > 4 \mathrm{T} > 4 T>4 时,只有一个样本还有特征,而基于单个样本的统计信息不能反映全局分布,因此 BN 效果不好;
  • 若在模型测试阶段,存在 T \mathrm{T} T 值大于任一训练样本的测试样本,则无法找到相应的、基于训练集的归一化统计量,因此 BN 无法运行。

在这里插入图片描述

此处引用自:模型优化之 Layer Normalizationhttps://zhuanlan.zhihu.com/p/54530247



2 前馈子层

在这里插入图片描述

  • 前馈子层提供了非线性变换,使得 Transformer 不仅依赖于线性变换,还可以通过 ReLU 等非线性激活函数捕获复杂的模式,提升了模型对多样性数据的表达能力。
  • 前馈子层的计算成本较低,能与自注意力机制并行处理,大大提高了 Transformer 的效率。


3 多头注意力机制

在这里插入图片描述

  • 多头注意力采用多组可学习参数,提供多种注意力分配结果(最后进行融合)
  • 类似于 CV 中的多尺度,提供不同的感受野(最后进行融合)


4 Vision Transformer (ViT)

4.1 提出背景

  • Transformer 在 NLP 领域取得了极大的成功,因此 CV 领域也希望通过 Transformer 来获得性能上的进一步提升。
  • 由于 Transformer 所处理的输入是一维的序列,而图片是二维的,因此需要对图片进行展开,但这也导致了输入序列的长度呈平方级的增长。


4.2 模型结构

在这里插入图片描述
上图流程如下:

  • 将原始图片切割为 16 × 16 16\times 16 16×16 的块;
  • 将每个块展平为一维向量;
  • 加入 [ c l a s s ] \mathsf{[class]} [class] 标志位( ∗ * ),并引入位置编码( 0 , . . . , 9 0,...,9 0,...,9);
  • 将处理得到的结果输入 Transformer 的编码器;
  • 将编码得到的结果输入 MLP 层;
  • 根据 [ c l a s s ] \mathsf{[class]} [class] 标志位得出预测结果,即该图片属于哪个类别。

上图公式如下:

z 0 = [ x class ; x p 1 E ; x p 2 E ; ⋯   ; x p N E ] + E p o s , E ∈ R ( P 2 ⋅ C ) × D ,   E p o s ∈ R ( N + 1 ) × D z ℓ ′ = MSA ( LN ( z ℓ − 1 ) ) + z ℓ − 1 , ℓ = 1 … L z ℓ = MLP ( LN ( z ℓ ′ ) ) + z ℓ ′ , ℓ = 1 … L y = LN ( z L 0 ) \begin{align} \text{z}_0 &= [\text{x}_{\text{class}}; \text{x}_p^1 \text{E}; \text{x}_p^2 \text{E}; \cdots ; \text{x}_p^N \text{E}] + \text{E}_{pos}, &\quad \text{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \text{E}_{pos} \in \mathbb{R}^{(N+1) \times D} \tag{1} \\ \text{z}'_\ell &= \text{MSA}(\text{LN}(\text{z}_{\ell-1})) + \text{z}_{\ell-1}, &\qquad \ell = 1 \ldots L \tag{2} \\ \text{z}_\ell &= \text{MLP}(\text{LN}(\text{z}'_\ell)) + \text{z}'_\ell, &\qquad \ell = 1 \ldots L \tag{3} \\ \text{y} &= \text{LN}(\text{z}_L^0) \tag{4} \end{align} z0zzy=[xclass;xp1E;xp2E;;xpNE]+Epos,=MSA(LN(z1))+z1,=MLP(LN(z))+z,=LN(zL0)ER(P2C)×D,EposR(N+1)×D=1L=1L(1)(2)(3)(4)

⚠️ 对公式含义的说明

  • x class \text{x}_{\text{class}} xclass 是指 [ c l a s s ] \mathsf{[class]} [class] 标志位;
  • x p 1 E \text{x}_p^1 \text{E} xp1E 是指通过参数矩阵 E \text{E} E 将块 x p 1 \text{x}_p^1 xp1 展平;
  • LN ( ) \text{LN}() LN() 是指层归一化, MSA ( ) \text{MSA}() MSA() 是指多头注意力;
  • + z ℓ − 1 + \text{z}_{\ell-1} +z1 + z ℓ ′ + \text{z}'_\ell +z 都是指残差连接;
  • z L 0 \text{z}_L^0 zL0 是指第 L L L 层输出的第 0 0 0 个元素,即 [ c l a s s ] \mathsf{[class]} [class] 标志位。


4.3 [class] 标志位

  • [class] 是一个固定的向量,采用随机初始化。
  • [class] 被添加到输入序列中作为开头,并在编码器中与图片的块一起被处理。
  • 通过自注意力机制,[class] 能够聚合所有块的信息,并作为图片的全局表示用于最终的分类预测。
  • 相对于直接在所有块上进行聚合,[class] 提供了一种集中的特征表示,简化了分类过程。

此处 ViT 借用了 BERT 的思想



<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值