中文标题:基于自注意力指导复制机制的生成式摘要
论文链接:https://aclanthology.org/2020.acl-main.125.pdf
发表:ACL 2020
组织:京东
Abstract
目前文本摘要中,确保复制机制能够将文章中重要的单词复制出来仍然是一项挑战。本文提出了基于Transformer的模型来增强复制机制,利用度中心性来辨认重要的词汇。
1. Introduction
作者探究了常规的基于transformer和PGN模型复制机制的方法可能会漏掉一些关键的词汇,如下表所示:

可以看出常规的复制机制漏掉了“obama”和“nominees”两个关键词。本文做出的贡献可以概括如下:
(1)作者提出了基于自注意力指导的复制机制(SAGCopy),引入了自注意力图,通过邻接矩阵计算每个单词的度中心性。本文采用TextRank算法计算入度中心性,作为对比,本文也采用了出度中心性进行对比。
(2)度中心性的结果作为“指导信息”来确定最后的复制单词的概率分布,作者将注意力机制

该研究针对文本摘要中的复制机制挑战,提出了一种名为SAGCopy的新型模型,结合Transformer和自注意力度中心性来识别重要词汇。SAGCopy通过计算词的入度和出度中心性,为复制机制提供指导,增强对关键信息的捕捉。实验结果显示,这种方法能有效提升摘要的准确性。
最低0.47元/天 解锁文章
1144

被折叠的 条评论
为什么被折叠?



