Self-Attention Guided Copy Mechanism for Abstractive Summarization

该研究针对文本摘要中的复制机制挑战,提出了一种名为SAGCopy的新型模型,结合Transformer和自注意力度中心性来识别重要词汇。SAGCopy通过计算词的入度和出度中心性,为复制机制提供指导,增强对关键信息的捕捉。实验结果显示,这种方法能有效提升摘要的准确性。
摘要由CSDN通过智能技术生成

中文标题:基于自注意力指导复制机制的生成式摘要

论文链接:https://aclanthology.org/2020.acl-main.125.pdf

发表:ACL 2020

组织:京东

Abstract

目前文本摘要中,确保复制机制能够将文章中重要的单词复制出来仍然是一项挑战。本文提出了基于Transformer的模型来增强复制机制,利用度中心性来辨认重要的词汇。

1. Introduction

作者探究了常规的基于transformer和PGN模型复制机制的方法可能会漏掉一些关键的词汇,如下表所示:

可以看出常规的复制机制漏掉了“obama”和“nominees”两个关键词。本文做出的贡献可以概括如下:

(1)作者提出了基于自注意力指导的复制机制(SAGCopy),引入了自注意力图,通过邻接矩阵计算每个单词的度中心性。本文采用TextRank算法计算入度中心性,作为对比,本文也采用了出度中心性进行对比。

(2)度中心性的结果作为“指导信息”来确定最后的复制单词的概率分布,作者将注意力机制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>